
Distributed Computing
From First Principles

Kenneth Emeka Odoh
https://kenluck2001.github.io

https://kenluck2001.github.io/

Table of Contents
● Theoretical foundations (two-general problem, impossibility proof).
● Primer on Parallel programming (exclude networking programming)
● OpenMPI tutorial
● Logical clocks
● Paxos (Single Value Paxos, Sequence Paxos)
● Failure detector
● Leadership election
● Raft
● Anti-entropy (CRDT, Merkle tree)
● Case studies
● Exercises

Recommended reading: https://kenluck2001.github.io/blog_post/distributed_computing_from_first_principles.html
Diversity & inclusion Initiative:
https://kenluck2001.github.io/blog_post/authoring_a_new_book_on_distributed_computing.html

2

https://kenluck2001.github.io/blog_post/distributed_computing_from_first_principles.html
https://kenluck2001.github.io/blog_post/authoring_a_new_book_on_distributed_computing.html

Theoretical Foundations
● Distributed systems is a series of independent nodes connected by a network

and appears as a coherent system.
○ Common examples: Internet, Edge computing, and cloud computing.
○ Challenging due to network failures, node failures.

● CAP theorem (AP, CP system).
● Most algorithms for distributed system consist of a derivative of Paxos, Raft

tuned to meet specific application needs.
● Applications include distributed caching, distributed key-value hash e.t.c

Theoretical foundations for Distributed systems. They include:

● FLP Impossibility of Consensus
● Two general problem 3

Figure 1: Distributed Systems with nodes 4

Two Generals’ problem

Figure 2: Two general problem 5

S. Haridi, KTHx 1d2203.1x

FLP Impossibility of Consensus
This describes the necessary conditions for consensus to be achieved. The following properties
must hold:

● Agreement (every node must have the same value)
● Validity (only decide on values that were previously proposed)
● Termination (quit the algorithm after the decision has been made)

This is shown when consensus is impossible in an asynchronous, synchronous, and partially
synchronous system.

Consensus cannot be solved in an asynchronous system if there is a single failure. Hence, failure
detectors are needed.

Consensus cannot be solved in a synchronous system if N-1 nodes fail.

Consensus is solvable in a partially synchronous system with up to N/2 crashes. 6

Primer on Parallel programming
Modern computers can multitask. It is desirable to exploit this property to efficiently
solve our problem. Our focus will be on the following:

● Multi-Core programming
○ Handling parallelism by running on multiple processor

● Multi-Threading
○ Slicing a program using the scheduler to run several portions at intervals.
○ Context switching

When to use concurrency?

● Task can be split and independent (minimal signaling)
● Divide and Conquer

Amdahl’s law ? 7

Synchronization
Synchronization is to make two things to happen simultaneously at a given time

Synchronization constraints:

● Serialization
○ Events are ordered

● Mutual exclusion
○ Two events does not happen at the same time

It is easy to impose synchronization constraint by using a global clock.

Synchronization has mutexes, semaphores, monitors, conditional variable

The focus is on using semaphores and mutexes 8

Figure 3: Example of two people seeking to meet to launch

9

Concurrency
Concurrency is when it is impossible to determine the order of execution from
looking at the source code.

Non-determinism makes debugging harder.

Thread safety: manipulating shared resources in a way to prevent side effects.

Level of thread safety

● Thread safe: free from race condition when handle by multiple threads.
● Conditionally safe (partial thread safe)
● Not thread safe

https://en.wikipedia.org/wiki/Thread_safety 10

https://en.wikipedia.org/wiki/Thread_safety

How to achieve Thread Safety
● Re-entrancy: swappable threads still gives the desired computation.
● thread-local storage
● Immutable objects

https://en.wikipedia.org/wiki/Thread_safety

Local variable have minimal synchronization problems. Shared variable are the
bone of contention for synchronization

Atomic variable: cannot be preempted

11

https://en.wikipedia.org/wiki/Thread_safety

Semaphores
Semaphores: in real life, it is a visual method of communication between people
using lights, flags among others.

Formulation of semaphores

● On initialize, it is set to a defined value.
● Impossible to read the current value of a semaphore ?WHY
● Thread can increment or decrement the semaphores.
● On decrement, if the value is negative, the thread blocks until another thread

wakes it up.
● On increment, after waking up, there is no guarantee on the order of the

thread to be executed by the scheduler.
12

Semaphores (Continue)
● Impossible to know if a semaphore would block or not.
● Impossible to know if there are threads waiting when if there a new thread

signals the semaphores, so it may not be 0
● After an increment operation by a thread on a semaphore and a thread is

woken up, both threads will run concurrently.

Thread states

● Block: notify the scheduler not to run it
● Unblock: notify the scheduler that it can run

13

Semaphores (Continue)
sem = Semaphore (1)
sem.increment () / sem.signal()
sem.decrement () / sem.wait()

Advantages of using semaphores

● Solutions with semaphore are clean and less risk of errors
● It is efficient in many systems

14

Signal vs Wait
● Signaling is a use case for semaphores. This is when a thread sends a signal

to other thread to show that an event has occurred.

Figure 4: Show diagram of how to a1 < b1 (initial sem = 0)

15

Downey, The Little Book of Semaphores

Figure 5: Show examples of two thread

16

Downey, The Little Book of Semaphores

?

Figure 6: Synchronizing two threads 17Downey, The Little Book of Semaphores

Mutex

Figure 7: Show a counter as an example

● Symmetric solution (all threads run the same code)
● Asymmetric solution (multiple threads run the multiple code)

18

Downey, The Little Book of Semaphores

Barrier

● The goal is that all the threads will not enter the critical section until the
rendezvous is complete

● Barrier is locked until every thread has arrived.

Turnstile

● Barrier requires a turnstile
● Turnstile is a rapid wait and signal in succession with initial value set to 0 is

locked 19

Downey, The Little Book of Semaphores

● This allows one thread to proceed at a time, and stop all other threads
● If locked,the nth thread unlock it, then all thread goes through

20

Downey, The Little Book of Semaphores

Better Version of Barrier
2-phase barrier
It force thread to block twice

● for every thread arriving the critical
section

● for every thread departing the critical
section

Disadvantage may lead to more context
switching

Read more about preloaded turnstile

21

Downey, The Little Book of Semaphores

OpenMPI
Two-sided communication

● MPI_Irecv
● MPI_Isend
● MPI_Waitall
● MPI_Recv
● MPI_Send

One-sided communication

● MPI_WIN_create()
● MPI_WIN_allocate()
● MPI_GET()MPI_PUT()
● MPI_Accumulate()
● MPI_Win_free()

Tutorial: https://www.codingame.com/playgrounds/349/introduction-to-mpi/introduction-to-distributed-computing

Best Practices for One-sided Communication

● No user-defined operation in MPI_Accumulate.
● Ensure local completion before accessing the buffer in an epoch.
● It is impossible to mix MPI_GET, MPI_PUT, MPI_Accumulate in a single epoch

22

https://www.codingame.com/playgrounds/349/introduction-to-mpi/introduction-to-distributed-computing

Logical Clocks

Lamport Clocks
Source code: https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/lamport1.c

24

https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/lamport1.c

Vector Clocks
Source code: https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/vector2.c

25

S. Haridi, KTHx 1d2203.1x

https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/vector2.c

Vector Clocks (Continue)

26

S. Haridi, KTHx 1d2203.1x

Vector Clocks (Continue)

27

S. Haridi, KTHx 1d2203.1x

Consensus
● All correct nodes propose a value.
● Every node decides on the same value.
● Only decide on proposed values.
● Proposed values are either committed or aborted.

Atomic broadcast (All correct node deliver same message).

Our use case will favour linearizability / atomic consistency (multiple nodes) vs
sequential consistency (single node).

28

Paxos (Single Value)

Source code: https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/single-paxos3.c

29

https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/single-paxos3.c

Paxos (Single Value)

Max(S) is any element (k, v) of S s.t k is highest
proposal number S. Haridi, KTHx ID2203.2x 30

Paxos (Sequence)
Source code: https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/sequence-paxos4.c

31

https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/sequence-paxos4.c

Paxos (Sequence)
S = {(n1, v1), ….,
(nk,vk)}
 fun max(S):
 (n,v) =: (0,⟨⟩)
 for (n’,v’) in S:
 if n < n’ or (n =
n’ and ∣v∣ < ∣v’∣):
 (n,v) :=
(n’,v’)
 return (n,v)

S. Haridi, KTHx ID2203.2x 32

Failure Detector

Working principles:
● A way to identify failures among nodes.
● Periodically exchange heartbeat message.
● Mark delayed processes as suspected, modify time deltas and if exceeded again

and repeat if set epoch is exceeded, marks the process as dead.
● Hence, trade off between completeness and accuracy.

Contrast the difference between Failure detection and Leader election
● Failure detector identifies failed processes
● Leader election detects correct process
● Leader election is a failure detector. Hence, always suspect all processes except

leader

Source code: https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/failure-detector2.c

33

https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/failure-detector2.c

Failure Detector (Continue)
The algorithm does the following:

● Each node has a failure detector
● initially wrong, but eventually

correct
● periodically exchange heartbeat

messages with every supposedly
alive process

● if timeout, then suspect process
● if a message is received from a

suspected node, revise suspicion,
and increase the timeout.

● Otherwise, detects a crash

For a failure detector to be useful, it must
meet the requirements with varying certainty.

● Completeness: (when do crash nodes
get detected?)

 Every crashed process is eventually
detected by every correct process (liveness).

● Accuracy: (when do alive nodes get
suspected?)

 No correct process is ever suspected
(safety).

Leader Election

● There are problems with multiple
proposers. Hence, we can to
designate a single proposer as the
leader.

● A leader can transition to a
follower and vice versa.

Source code: https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/leader-election2.c

35Figure 8: Description of Leader election

https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/leader-election2.c

Leader Election (Continue)

The rule of thumb on deciding duration

● if the value is set too low, then the second candidate begins election before
the end of the first election triggered by the first candidate.

● if too high, then it will take too long for the election to start after the old leader
has died. The new candidate starts an election.

Discuss possibilities for optimization?

https://kenluck2001.github.io/blog_post/distributed_computing_from_first_principles.html#leader-ele
ction

36

https://kenluck2001.github.io/blog_post/distributed_computing_from_first_principles.html#leader-election
https://kenluck2001.github.io/blog_post/distributed_computing_from_first_principles.html#leader-election

Raft
Raft is a leader election-based sequence Paxos. It consists of Paxos, log, and leader.

Using a combination of sequence paxos and leader election.

Leader election is called if the leader is dead.

There are roles in the Raft algorithm

● Candidate: node aiming to be a leader.
● Leader: it is the candidate that is chosen as a leader.
● Follower: a participant that is not engaged in the election.

Possible problems:

● Multiple leaders
● No leaders
● Missing log entries
● Divergent log

Can an election choose multiple leaders? yes
Can an election fail to choose a leader? yes

37

https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/sequence-paxos4.c
https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/leader-election2.c

Raft (Continue)
use leader election to get the leader and use as proposer
if (rank == leader)
{
 // use as proposer
}
else
{
 isacceptor = rank % 2 //or other forms of grouping
 if (isacceptor)
 {
 // use as acceptor
 }
 else
 {
 // use as learner
 }
}

use leader election to get the leader and use as proposer

if (rank == leader)
{
 // use as proposer
}
else
{
 islearner = (leader + 1) % n //or other forms of grouping where n:
total number of processes
 if (islearner)
 {
 // use as learner
 }
 else
 {
 // use as acceptor
 }
}

38Implementation details of possible Raft patterns

Anti-entropy mechanisms

● CRDT
○ Conflict-free replicated data type

● Ancillary Structures

39

CRDT
This is a data structure that maintains a consistent state irrespectively of the order
of operations executed on it.

Remote syncing (replication) across multiple devices can be challenging to
achieve. Mathematically, it is a partially ordered monoid forming a lattice. It has to
be commutative and idempotent.

● Eventual consistency
● Preserve ordering of the data
● Local-first application

40

Ancillary Structures

● Merkle trees

● Error control codes

○ Turbo codes, Reed–Solomon codes

41

Case Studies
● Distributed shared primitives

○ Source code / implementation:
https://kenluck2001.github.io/blog_post/distributed_computing_from_first_principles.html#distri
buted-shared-primitive\

● Distributed hashmap
○ Source code:

https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/lamport1-majority
-voting8.c

42

https://kenluck2001.github.io/blog_post/distributed_computing_from_first_principles.html#distributed-shared-primitive%5C
https://kenluck2001.github.io/blog_post/distributed_computing_from_first_principles.html#distributed-shared-primitive%5C
https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/lamport1-majority-voting8.c
https://github.com/kenluck2001/DistributedSystemReseach/blob/master/blog/lamport1-majority-voting8.c

Code Philosophy / Lessons

● Our philosophy has been to think locally and act globally. We do
computations on the node (update internal state) and communicate with
other nodes by messaging.

● Retrieving messages and probing to check the tag of messages to identify a
specific event. Busy waiting is used to retrieving messages on an irecv.
Otherwise, only the last sent is received on polling. This can be a bug where
you retrieve the same message multiple times.

● It is good to take steps to avoid both deadlocks and livelock. Deadlock can
happen in mismatch message order between send and receive, especially in
blocking mode. It is possible in non-blocking mode to consider how request
objects are owned between the receiving and sending nodes.

43

● Rather than communicating by sharing memory, it is better to share memory by

communicating.

● For the Paxos algorithm when using Unix timestamps as the round number or ballots

for their monotonically increasing properties, then a necessary prerequisite is to
synchronize the time settings on at least the set of proposers.

● Organizing the processes into groups with custom communicators. This allows for

targeted synchronization for grouped processes without impacting the whole
processes in the application.

● When trying to create an array of atomic counters. It is desirable to utilize an array

of shared pointers, rather than an array of shared values.

● Livelock is possible too in a non-blocking case when we pull in a busy wait manner.

As we exit from the end of the loop when we have received the expected number of
messages. It can be sensible to keep track of the number of exchanged messages to
force an exit from the endless loop. 44

● We can cancel pending requests and tune the criteria for quorum based on
business needs. This would impact resilience on the Distributed Systems.

● We use pooling on receiving the message and checking each tag, rather than
waiting on specific tags to make code modular.

● Always pool on waiting reads in a busy-wait style.

● Make use of simple structure. Even our log for sequence Paxos is not a log, but an
abused linked list with some atomic primitives.

● Our sequence Paxos uses single Paxos on each item that the proposer will send.
Unfortunately, our logic is restricting to only the possibility of having one
proposer.

● There are problems with passing pointers across nodes. This is because we don't
have a universal shared memory. Always keep pointers local as a lack of
Distributed memory makes indirection on a pointer useless. 45

Exercises

● Write tests for the Distributed algorithm discussed in the blog. We will give the
user the task of implementing tests as an exercise.

● Implement telemetry for experimentation on characteristics of any algorithm

● Set up a test bed with a simulated LAN with vagrant VM for running MPI
cluster.

● implement network shaping using VM to test out different performances in
varying network bandwidth.

46

https://github.com/mrahtz/mpi-vagrant

Conclusions
Various implementation of distributed systems can vary along:

● Who partakes in the leadership election? Is it a client with read or write
privileges?

● Value of time delta in the failure detector?
● Optional server to help late clients sync to get decided information from past

rounds?
● Set fixed threshold on rounds that are considered in quorum?
● Number of clients that can participate in a quorum?

Writing a textbook on Distributed Systems (
https://kenluck2001.github.io/blog_post/authoring_a_new_book_on_distributed_co
mputing.html) 47

https://kenluck2001.github.io/blog_post/authoring_a_new_book_on_distributed_computing.html
https://kenluck2001.github.io/blog_post/authoring_a_new_book_on_distributed_computing.html

References
1. http://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf by Allen

Downey
2. Database Internals: A Deep-dive into how distributed data systems works by

Alex Petrov.
3. https://e-science.se/2020/05/course-on-reliable-distributed-systems-part-i/
4. http://wgropp.cs.illinois.edu/courses/cs598-s15/lectures/lecture34.pdf

48

http://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf

