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A B S T R A C T

Carbon dioxide (CO2) capture from natural gas is integral towards meeting pipeline sales gas specifications and
avoiding operational problems during natural gas liquefaction. Therefore, it is important to understand how
different process parameters would affect the performance of the CO2 capture process plant. In this research, CO2

capture from a typical Nigerian natural gas composition was simulated using ProMax® 4.0. The validated si-
mulation was used to generate 3125 datasets while varying a number of process parameters. A parametric
sensitivity analysis was conducted by varying lean amine flow rate (LAF, 3500–4300 t/day), lean amine tem-
perature (LAT, 40–60 °C), lean amine pressure (LAP, 60–75 bar), MDEA–PZ concentration difference (CMDEA–PZ,
36–44 wt.%) and heat duty (HD, 50.4–56.52 GJ/h) to determine their effects on CO2 capture efficiency alongside
foaming and amine vaporization. The parametric analysis showed that the LAF and MDEA–PZ concentration
have the highest effect on the CO2 capture plant. In addition, 70% of the generated datasets was used to train the
intelligent model named adaptive neuro–fuzzy inference system (ANFIS) while 30% was used for validation.
Results revealed that the ANFIS model accurately predicted the simulation results with 2.4%AAD and RMSE of
4.0E-03, respectively.

1. Introduction

Utilization of low carbon fuels like natural gas will play a key role in
reducing global carbon emissions. According to the British Petroleum
(BP) Energy Outlook in 2016, the demand for natural gas grew by 1.8%
per annum which made it the fastest growing fossil fuel [1]. In addition,
it has been forecasted that the demand for natural gas will increase
from 3160.2 million tonnes oil equivalent in 2015 to 4428.1 million
tonnes oil equivalent in 2035 [1]. Therefore, natural gas transportation
through pipeline and as liquefied natural gas (LNG) is expected to in-
crease. The extraction of CO2 to negligible concentration is a vital
process that must be performed prior to liquefying natural gas (LNG)
because it would prevent operational problems like freezing and clog-
ging of cryogenic heat exchangers during natural gas liquefaction which
occurs around −160 °C [2,3]. It also allows the liquefaction plant to be
easily managed when there are process plant upsets at the upstream
CO2 capture plant. There are various technologies for capturing CO2

like absorption, adsorption, membrane, cryogenic and microbial tech-
nology. However, the most proven and commercially available tech-
nology for CO2 capture is by chemical absorption through the use of

amine–based solvents [4,5]. Amine–based solvents are classified as
primary (monoethanolamine, MEA), secondary (diethanolamine, DEA)
and tertiary (methyldiethanolamine, MDEA) amines. Amine solvents
known as sterically hindered amine (2–amino–2–methyl–1–propanol,
AMP) and diamine (piperazine, PZ) have also been commonly used for
CO2 capture [6–8]. Furthermore, there are other problems associated
with amine–based CO2 which include high energy for amine solvent
regeneration, foaming, and amine losses by vaporization [9–13]. Amine
foaming issues are caused by the solubility of liquid hydrocarbons,
organic acids and inhibitors, which can lead to reduced absorption
capacity, amine carryover to downstream units and reduced mass
transfer and efficiency [14–19]. However, Chakravarty et al. made the
proposition that using blended amine solvents will maximize their CO2

removal potentials [20]. Several experimental and pilot plant studies
have reported improved CO2 absorption–regeneration efficiency of
blended amine solvents [21–25]. CO2 removal from high pressure
natural gas (i.e. natural gas sweetening) can be achieved using acti-
vated MDEA (aMDEA) which is a combination of MDEA as the base
solvent and PZ as the activator.

The need to efficiently monitor, control and optimize the CO2
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capture process plant has led to the use of process simulators and in-
telligent models. There are a number of process simulators which in-
clude Aspen HYSYS, Aspen Plus, and ProMax® while one of the in-
telligent models used is adaptive neuro–fuzzy inference system (ANFIS)
[26–34,6].

The advantage of process simulators is that it does not require
process plant historical data, hence can be used for initial design of
process plants and to also optimize newly built process plants. Unlike
process simulators, intelligent models make use of process plant his-
torical data which can be very time–consuming and expensive to as-
semble. However, intelligent models are associated with very high
predictive power and do not involve the application of complex ther-
modynamic theories and expression [32,34]. Therefore, both process
simulator and intelligent models can be applied together towards pro-
cess plant design and optimization.

The objective of this study is to use ProMax® 4.0 to model and va-
lidate CO2 capture from high pressure natural gas, generate datasets
consisting of dependent and independent process parameters and then
conduct a parametric sensitivity analysis. ANFIS model will also be
employed to predict the dependent process parameters. The in-
dependent process parameters are the lean amine pressure (LAP, bar),
lean amine flow rate (LAF, t/day), lean amine temperature (LAT, °C),
heat duty (HD, GJ/h), MDEA and PZ wt.% concentration difference
(CMDEA–PZ, wt.%). The dependent process parameters are CO2 flow rate
in the sweet gas (SG–CO2, t/day), PZ flow rate in the sweet gas (SG–PZ,
tonne/day), MDEA flow rate in the sweet gas (SG–MDEA, t/day), CO2

rich amine loading (RAL, mol CO2/mol amine), CO2 lean amine loading
(LAL, mol CO2/mol amine), pentane (C5) flow rate in the CO2 rich
amine solution (RA–C5, t/day) and methane flow rate in the sweet gas
(SG–C1, t/day).

2. MDEA–PZ–CO2–H2O reaction chemistry

The absorption of CO2 using amine–based solvents is analogous to
an acid–base reaction, where the amine solvent is the base while CO2 is
the acid, to form salts like amine carbamates (AmineCOO−), bicarbo-
nates (HCO3

−), etc. In this study, the chemical equilibria involve a
bi–solvent blend containing MDEA and PZ and the various reactions
between the amine solvents and CO2 is detailed in Eqs. (1)–(11)
[35–41]:
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A typical ionization reaction for aqueous systems that involves CO2

is shown in Eqs. (1)–(3). The reaction between CO2 and MDEA (of very
low CO2 absorption rate) does not produce AmineCOO− but generates
HCO3

− because MDEA is a tertiary amine solvent (Eqs. (4) and (5))
[35]. Hence, there is the need to use a polyamine activator (like PZ) to
enhance the CO2 absorption rate when a tertiary amine solvent is used.
Eqs. (6)–(11) highlights the various reactions involving CO2 and PZ.
The presence of two secondary amino groups in PZ leads to the for-
mation deprotonated PZ (PZH2+

2 ) as well as PZ dicarbamate (PZ
(COO−)2). The CO2–amine species of PZ and MDEA are expected to
complement each other towards enhancing their CO2 absorption and
regeneration performance. This is because the formation of HCO3

−

which is produced by MDEA favors regeneration while the formation of
different carbamates of PZ increases the rate of CO2 absorption.

3. Process simulation description

The natural gas sweetening plant using activated MDEA was simu-
lated using ProMax® 4.0, and the natural gas composition used fall
within the range of a typical Nigerian natural gas composition (Table 1)
as made available by Gas Aggregation Company of Nigeria [42]. The
activated MDEA in this study is a bi–solvent blend containing MDEA
and PZ. Table 1 shows the process parameters used for modeling the
CO2 capture plant while Fig. 1 shows the process flowsheet of a typical
natural gas sweetening plant.

The fluid property package chosen for the simulation was Amine
Sweetening–Peng Robinson. This package was designed by Bryan
Research & Engineering, Inc. for gas sweetening units. The Amine
Sweetening property package accounts for non–ideal ionic interactions
except at very high acid gas loadings (> 1 mol/mol) [43]. The ab-
sorber stage model and thermodynamic package were specified as, ideal
stage and TSWEET Kinetics Model as recommended by ProMax® 4.0
licensors [43]. The TSWEET Kinetics Model predicts the amine–CO2

kinetic reactions that occur in the absorber. The absorber and

Nomenclature

MDEA Methyldiethanolamine
PZ Piperazine
SG–CO2 CO2 flow rate in the sweet gas t/day
SG–MDEA MDEA flow rate in the sweet gas, t/day
SG–PZ PZ flow rate in the sweet gas, t/day
RA–C5 Pentane flow rate in the CO2 rich amine solution exiting

the absorber, t/day
SG–C1 Methane flow rate in the sweet gas exiting the absorber

top, t/day
RAL CO2 rich amine loading, mol CO2/mol amine
LAL CO2 lean amine loading, mol CO2/mol amine
HD Heat duty, GJ/hr
LAF Lean amine flow rate, t/day

LAP Lean amine pressure, bar
LAT Lean amine temperature, °C
CMDEA–PZ MDEA–PZ concentration difference, wt.%
aMDEA Activated MDEA, wt.%
OH− Hydroxyl ion
H3O+ Hydronium ion
HCO3

− Bicarbonate ion
CO3

2− Carbonate ion
MDEAH+ Protonated MDEA
PZH2

2+ Deprotonated PZ
PZH+ Protonated PZ
PZCOO− PZ carbamate
H+PZCOO− Protonated PZ carbamates
PZ(COO−)2 PZ dicarbamate
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regenerator consist of 36 trays and 24 trays respectively and they were
modeled with ideal/real stage ratio of ‘3′ and ‘2′ respectively. The ab-
sorber and regenerator diameters were specified (4 m and 3 m, re-
spectively) while their tray spacing was kept at 0.6 m. The tray spacing
was chosen based on previous studies which can be from 0.5 m to
0.76 m [44,45,6]. The column (absorber and regenerator) number of
trays and diameters were varied constantly until the optimal condition
was determined. The optimal condition is determined when there is
little or no change in CO2 absorption efficiency when the number of
trays and column diameters were varied. In addition, a ProMax solver
tool was implemented on the lean amine stream in order to determine
the amine flow rate that will meet the target CO2 specification in the
sweet gas (2 ppm). This was done will varying the column (absorber
and regenerator) diameter and tray number.

The pressure drop along the absorber column was fixed at 0.2 bar.

The pressure of the CO2 rich amine solution entering the flash drum was
9 bar and was achieved with the upstream valve. This allows most of
the absorbed hydrocarbons to be flashed from the CO2 rich amine so-
lution thereby preventing hydrocarbons from entering the high tem-
perature regenerator. The temperature approach in the lean/rich heat
exchanger was specified as 10 °C in order to maximize the thermal ef-
ficiency of the heat exchanger. This temperature approach was
achieved by implementing a ProMax solver option on the CO2 rich
amine stream exiting the lean/rich heat exchanger.

The stage model and thermodynamic package for the regenerator
column was specified as ideal stage and TSWEET Stripper as re-
commended by ProMax® 4.0 licensors [43]. The system factor for both
the absorber and regenerator was specified as 0.8, as this shows that
there could be the possibility of foaming. The activated MDEA system
for natural gas sweetening is usually a blend of MDEA and PZ (when
blended with physical or chemical solvents) can be used up to 0.8
kmol/m3 (about 7 wt.%) [5,46]. This is because PZ will precipitate
when it is used at concentration above its room temperature (20 °C)
solubility which is 1.4 kmol/m3 or 14 wt.% [46–48]. Hence this study
limited PZ concentration to maximum 7 wt.% to avoid any chances of
precipitation. Therefore, for the base case simulation in this study the
MDEA and PZ concentration was 45 wt.% and 5 wt.%, respectively
since the total amine concentration is 50 wt.%. The natural gas com-
position used in this study contains 2 vol.% CO2 which have to be re-
duced to 2 ppm (in the sweet gas) with minimum energy penalty. The
amine concentration and CO2 specification in the sweet gas was used
for the validation of the simulation.

3.1. Data acquisition

Suitable data sets which cover the real–life distribution of input and
output variables were integral to developing reliable models. The ac-
quisition of suitable data sets for modeling allows the impact of input
variables (independent process parameters) on output variables (de-
pendent process parameters) to be observed. The datasets used in this
study was generated from validated process simulation using the
ProMax Scenario Tool®. The Scenario Tool® is an Excel add-in that is
used as an Excel workbook embedded within the ProMax simulation

Table 1
The detailed data used for the process simulation.

Parameters Process data

Feed gas
Gas composition (vol.%) C1 = 91.1

C2 = 3.48
C3 = 1.9
iC4 = 0.4
nC4 = 0.55
C5+ = 0.5
CO2 = 2
H2O = 0.07

Temperature 25 °C
Pressure 50 bar
Flow rate 450 MMSCFD
Lean amine activated MDEA (aMDEA)
Total Amine Concentration 50 wt.% (MDEA = 45 wt.%; PZ = 5 wt.%)
Temperature 50 °C
Pressure 70 bar
Flow Rate 3900 t/day
Regenerator
Reboiler Duty 55.5 GJ/h
Regenerator Pressure 1.6 bar
Condenser Temperature 30 °C

Fig. 1. Flowsheet of a typical natural gas sweetening plant.
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which allows independent process parameters (input parameters) to be
specified and varied while monitoring results of various dependent
process parameters [43]. Stepwise procedure for the Scenario Tool is
provided in the Supplementary material. Table 2 shows the in-
dependent process parameters variables that were varied in the vali-
dated simulation.

4. Parametric sensitivity analysis and ANFIS modeling description

4.1. Parametric sensitivity analysis description

Parametric sensitivity analysis is integral in the optimizing process
plant operation because it allows the contribution of various process
parameters on the plant efficiency to be determined and quantified. For
this study, considering that the independent process parameters (LAP,
LAF, LAT, HD and CMDEA–PZ) have different units and scale, they were
normalized to between 0 and 1 using the correlation in Eq. (12). This
was done to make it easier to identify which independent process
parameter was most important.

= −
−

x x x
x xnorm

min

max min (12)

Where; xnorm is the normalized value of the process parameter, x is the
actual value of the process parameter, x min is the minimum value of the
process parameter while x max is the maximum value of the process
parameter.

The normalized independent process parameters (x–axis) were then
plotted in a graph against their corresponding value of the dependent
process parameter (y–axis). The graph is intended to reveal if the in-
dependent process parameter has a linear or inverse effect on the de-
pendent process parameter (y–axis). The slope of the graph indicates
the contribution or magnitude of the independent process parameter on
the dependent process parameter. When more than one independent
process parameters are studied (like in this case) the slope of the graph
can be used to compare which independent process parameters have
the highest and least impact on the dependent process parameter.

Fig. 2 displays scenarios where the normalized independent process
parameters can assume either a linear, exponential, logarithmic,

polynomial or a combination of these trends. It is important to note that
the slopes of logarithmic, exponential and polynomial curves are dif-
ferent at different points of the plot. In such cases, the slope of the
adjacent points is taken, after which the final slope will be the geo-
metric mean or log–mean average of the adjacent point’s slopes.

It is also observed (Fig. 2) that there could be cases where both an
increase and decrease regions (green and red curves) will exist on a
particular curve. For such scenarios the plot can be split into the dif-
ferent regions, and then the slope of each region is determined. This is
important because it will reveal which region has the highest impact on
the dependent process parameter. In order to compare such in-
dependent process parameter with other independent process para-
meters, a single slope will be determined. The single slope value is
determined by adding the absolute values of the different regions
slopes.

For this analysis, as one independent process parameter is varied,
other independent process parameters were kept constant, and their
effect on various dependent process parameters were recorded. The
independent process parameters were varied at MDEA–PZ concentra-
tion of 45 wt.%–5 wt.% which was the concentration used to validate
the simulation. Fig. 3 depicts the flow chart for conducting the para-
metric sensitivity analysis.

Another advantage of this method of parametric sensitivity analysis
is that it allows more than one independent process parameter to be
plotted in a single graph against a particular dependent process para-
meter.

4.2. ANFIS model description

ANFIS is an intelligent model that was introduced by [49], It com-
bines the high learning capabilities of a neural network with the
modeling ability of fuzzy logic to capture uncertainties in the data,
thereby resulting in a model with a high predictive power. This is a
fuzzy-based inference system based on adaptive neural network that

Table 2
Input process parameters varied in the validated simulation.

Independent process parameters Varied Range

LAP (bar) 5 60; 63.75; 67.5; 71.25; 75
LAF (t/day) 5 3500; 3700; 3900; 4100; 4300
LAT (°C) 5 40; 45; 50; 55; 60
CMDEA–PZ (MDEA/PZ, wt.%) 5 43/7; 44/6; 45/5; 46/4; 47/3
Heat duty (GJ/h) 5 50.4; 51.93; 53.46; 54.99; 56.52
Total datasets generated 3125

0

200
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800

0 0.2 0.4 0.6 0.8 1

Independent Process Parameter

Fig. 2. Normalized independent process parameters plotted against dependent process
parameter showing different scenarios. Fig. 3. Step-wise parametric sensitivity analysis flow chart.
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can model non-linear relationships in the data, and has proven useful
for prediction of chaotic time series. ANFIS uses a unique learning
procedure that combines gradient descent and least square to reduce
the likelihood of getting stuck in local minima, thereby guarantying
getting to the optima minima [50,49]. The learning in ANFIS employs a
two pass procedure in every epoch which consists of forward pass and
backward pass. The parameters for each node are obtained in the for-
ward pass that comes from the input. The error rate is propagated from
output to the input using the gradient descent [49]. In ANFIS, the
network and fuzzy inference system is trained by a neural network to
obtain the fuzzy representation. Any correctly designed ANFIS can
solve any nonlinear and complex problems with high predictive power
[51]. Fig. 4. displays the ANFIS architecture.

As shown in Fig. 4, ANFIS has five layers, two inputs x, and y and an
output z, Fig. 4. The first-order Sugeno fuzzy model can be represented
using the following rules:

Rule 1: if x is A1 and y is B1, then z1 = p1*x + q1*y + r1
Rule 2: if x is A2 and y is B2, then z2 = p2*x + q2*y + r2
Rule 3: if x is A1 and y is B2, then z3 = p3*x + q3*y + r3
Rule 4: if x is A2 and y is B1, then z4 = p4*x + q4*y + r4
In the above rules, p1, p2, p3, p4, q1, q2, q3, q4, r1, r2, r3, r4 are the

parameters and the linguistic labels are A1, B1, A2, and B2.
Layer 1: This layer provides the mapping of the input variables x, y

to fuzzy set {A1, A2, B1, B2}. This transition is done using a membership
function.

Layer 2: The aim of this layer is to derive firing strength from fuzzy
conjunction of the input. This results in the multiplication of the input
to produce an output. This is represented by W1(x, y) and W2(x, y).

Layer 3: This layer provides the ratio of ith firing strength to the
summation of firing strength. This is the normalization of the firing
strength across the levels. This is represented by W1(x, y) and W2(x, y).

Layer 4: This layer performs multiplication of the output from Layer
3 using a function of Sugeno fuzzy rule. This is represented by Eqs. (13)
and (14).

=
+

W W
W W1

1

1 2 (13)

=
+

W W
W W2

2

1 2 (14)

Layer 5: This is the output layer which is the summation of the
output from Layer 4. This uses a weighted average to perform de-
fuzzification to transform the fuzzy set into real-world output [52].
Table 3 shows the system parameters used for the ANFIS modeling.

The data preprocessing used in this project normalizes the data to
have the range between 0.1 and 0.9 and this reduces the effect of scale
differences in the data set. This does not affect the accuracy of the
prediction as the effect of scaling can be captured by the weights and
biases of the nodes, thereby not influencing the overall output. This
results in faster training times of the ANFIS network [53]. The ANFIS
model is a Python implementation named ANFIS [54] and was eval-
uated using cross-validation. Cross-Validation is the process of

randomly splitting the data set into K sets of roughly equal sizes. Only
one of the K sets is held out for testing. The remaining K-1 sets are for
training the model. The held-out set are predicted using the trained
model and for estimation of performance measures. The benefit of
cross-validation is that it prevent over fitting of the data, which can lead
to unrealistic estimation [55]. The choice of K is based on a trade-off
between computational power, variance, and bias. The lower values of
K would require cheaper computational resources, lower variance, and
higher bias. The higher values of K would require more computational
resources, higher variance, and lower bias. The choice of 5-fold cross
validation was chosen for this study for evaluating the performance of
ANFIS model [55].

4.3. Statistical error analysis

The accuracy and precision of the model was determined by using
the statistical measures which include absolute average deviation
(%AAD) and root mean square error as shown in Eqs. (15) and (16).
High accuracy and precision is achieved when%AAD and RMSE are
both close to zero. The%AAD was also used for validation of the CO2

capture plant simulation.

∑= −

=n
P N

N
%AAD 100

i

n
i i

i1 (15)

∑= ⎛

⎝
⎜ − ⎞

⎠
⎟

=n
P NRMSE 1 ( )

i

n

i i
1

2
0.5

(16)

Where: ‘n’ is the sample size, ‘Ni’ is the actual value from simulation and
‘Pi’ is the ANFIS predicted value.

5. Amine foaming tendency determination

Foaming is one of the major problems encountered during CO2 and
H2S removal from natural gas streams. This is usually caused by amine
degradation products, dissolved liquid hydrocarbons (C5+), organic
acids and inhibitors [14–18]. Foaming leads to reduced absorption
capacity, amine carryover to downstream units, reduced mass transfer
and efficiency [19]. This study predicted amine foaming tendency by
the flow rate of the absorbed C5 (pentane flow rate) in the CO2 rich
amine solution (RA–C5) exiting the absorber bottom. This method was
chosen because C5 is a liquid hydrocarbon and absorbed liquid hydro-
carbons by amine solvents lead to amine foaming. Therefore, the higher
the absorbed C5 in the CO2 rich amine solution is, the higher the ten-
dency of amine foaming.

6. Amine loss by vaporization determination

Amine loss by vaporization is one of the major challenges of CO2

capture plants. This is because it can lead to additional amine costs,
reduced CO2 capture efficiency in the absorber and introduces im-
purities in the treated gas, have environmental implications, and pose a
threat to human health and aquatic life [11,13]. All these contribute to
increased operating costs. This study analyzed the vaporization losses of
MDEA and PZ using their flow rate in the sweet gas (SG–MDEA and

Fig. 4. ANFIS architecture for a two input variables and one output variable.

Table 3
System parameters for the ANFIS modeling.

Parameter Description/value

Structure Takagi-Sugeno
Membership Gaussian
Number of inputs 7
Number of Outputs 6
Training method Hybrid (back propagation with least square estimation)
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SG–PZ). An increase in SG–MDEA and SG–PZ translates to an increase
to MDEA and PZ losses through vaporization.

7. Results and discussion

7.1. ProMax® 4.0 simulation validation

The initial step prior to conducting parametric sensitivity analysis
and ANFIS modeling is to validate the natural gas sweetening simula-
tion. One of the best approaches to validating simulation results is to
use the temperature profile in the absorber and regenerator. The ab-
sorber temperature profile reveals the exothermic trend of amine–CO2

reaction and an increase in temperature indicate where the absorption
rate is highest [56]. For CO2 capture systems containing high MDEA
concentrations (≥30 wt.% MDEA), the temperature bulge is located
towards the bottom of the absorber [57–62]. This trend is also re-
plicated by the MDEA–PZ simulation in this study (Fig. 5). In addition,
the regenerator temperature profile for amine–CO2 system is usually
highest at the bottom (slightly linear from the bottom to the center) and
reduces a bit sharply towards the top [63,7,64]. This was also the trend
observed in this study as shown in Fig. 5. Hence, the simulation is ac-
curately validated and results can be used for further study and ana-
lysis.

7.2. Parametric sensitivity analysis

Parametric sensitivity analysis was carried out in this study to in-
vestigate the effect of various process parameters (independent process
parameters), namely, lean amine pressure (LAP), lean amine flow rate
(LAF), lean amine temperature (LAT), heat duty (HD) and MDEA–PZ
weight concentration difference (CMDEA–PZ) on various dependent pro-
cess parameters. The dependent process parameters were CO2 flow rate
in the sweet gas (SG–CO2), PZ flow rate in the sweet gas (SG–PZ),

MDEA flow rate in the sweet gas (SG–MDEA,), CO2 rich amine loading
(RAL), CO2 lean amine loading (LAL), pentane (C5) flow rate in the CO2

rich amine solution (RA–C5) and methane flow rate in the sweet gas
(SG–C1). The C5 flow rate in the CO2 rich amine solution is used to
determine foaming tendency while the MDEA and PZ flow rate in the
sweet gas were used to estimate amine emissions during CO2 absorp-
tion.

7.2.1. Lean amine loading (LAL)
The LAL is a key process parameter because low LAL is associated

with higher CO2 absorption efficiency [65]. Fig. 6 reveals that both the
LAT and LAP have no significant effect on LAL, though LAL increases
with an increase in LAP.

Fig. 6 shows that as HD increases the LAL decreases; this is because
increasing the HD will enhance the breakdown of amine carbamates
(AmineCOO−), protonated amines (AmineH+) and bicarbonate ions
(HCO3

−) in the CO2 rich amine solution. Previous studies also con-
firmed this trend [28,66–68,21]. It is also confirmed that LAL has a
linear relationship with the LAF. This is because at high LAL, more LAF
will be required effective CO2 capture. This has been confirmed in the
literature [69,70,67,28]. It is important to note that an increased LAF is
not entirely desired because it usually leads to increased HD for re-
generation. On the effect of CMDEA–PZ on LAL, it was observed (Fig. 6)
that as CMDEA–PZ decreased, the LAL also increased. A decrease in
CMDEA–PZ translates to lower concentration of MDEA and higher PZ
concentration. In such scenario, the PZ–CO2 interaction will increase
while the MDEA–CO2 interaction will decrease leading to lower HCO3

−

concentration and increased PZ carbamates in the CO2 rich amine so-
lution. This is consistent with reported data in the literature [28,22].
Amine carbamates are more difficult to breakdown during regeneration
as compared to HCO3

−. The process parameters’ contributions to the
LAL rank in the order CMDEA–PZ> LAF > HD > LAT > LAP. There-
fore, the first three process parameters (CMDEA–PZ, LAF and HD) are
integral towards optimizing the LAL, but cost implications usually de-
termines which process parameter to consider first. Cost implications
here refer to increase in operating cost when there are increases in
amine solvent concentration, lean amine pumping and energy input.

7.2.2. Rich amine loading (RAL)
It is desirable for a process plant to be optimized in order to obtain a

high RAL or to make the amine solution reach its maximum CO2

loading capacity (equilibrium loading). This will translate to reducing
the CO2 flow rate in the sweet gas (SG–CO2) [65]. Hence, there is need
to have a good understanding of how various process variables affect
the RAL. Fig. 7 shows the relationship between different process
parameters and the RAL. It can be seen that HD and LAF have inverse
relationship with the RAL, whereas LAT, LAP and CMDEA–PZ have a
linear relationship with RAL. However, LAP, HD and LAT can be said to
have no significant contribution to the RAL because of their negligible
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Fig. 5. Absorber and regenerator temperature profiles of the base case (45 wt.%
MDEA–5 wt.% PZ) simulation.
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slopes.
Fig. 7 reveals that the LAF by far has the highest influence towards

RAL and an increase in LAF leads to a decrease in RAL. This relationship
has also been obtained in previous as well as in recent studies
[71,65,70,69]. This trend is beneficial because reducing the LAF while
maintaining the SG–CO2 minimizes the cost of pumping and sensible
heat during amine regeneration. The linear relationship between
CMDEA–PZ and the RAL is because of the competing effects of kinetics
and solubility. As the CMDEA–PZ effect increases from 0 to 1 the RAL
increases indicating that solubility (MDEA contribution) took priority
than kinetics (PZ contribution). It is also important to remember that
CO2 loading increases as amine molar concentration reduces and this is
the case as CMDEA–PZ increases from 0 to 1.

The HD is inversely related to the RAL as seen in Fig. 7. This sce-
nario have been demonstrated in a previous study [65]. Fig. 7 also
shows that increasing the LAT led to a slight increase in the RAL. An
increase in LAT decreases the viscosity of the lean amine solution but
increases the overall volumetric mass transfer coefficient [72,73]. This
can make solubility to take priority above kinetics within the tem-
perature ranges studied, and hence the higher RAL. The competing
effect between solubility and kinetics due to LAT has been previously
reported [74]. Increase in RAL due to an increase in LAT has also been
reported in the literature [75]. This highlights that in order to optimize
RAL, the most important parameter is LAF followed by CMDEA–PZ. Since
LAF has an inverse relationship with RAL, it is therefore important to
improve CO2 capture efficiency at the lowest possible LAF. The influ-
ence of the process parameters is in the order
LAF > CMDEA–PZ> HD > LAT > LAP.

7.2.3. Amine vaporization losses
Amine losses through vaporization is a big issue in CO2 capture

plants because it leads to increased capital and operating costs, en-
vironmental implications, as well as threats to human health and
aquatic life [11,13]. Capital cost will increase due to the requirement of
larger water wash units whereas the operating cost will increase due to
increased amine make–up especially for very expensive amine solvents.
Also, in terms of the environment, this can be detrimental due to pos-
sible toxicity of the amine solvents [13,11]. Figs. 8 and 9 reveals the
relationship between various process parameters towards MDEA and PZ
flow rates in the sweet gas (SG–MDEA and SG–PZ).

From Figs. 8 and 9, only the LAT and CMDEA–PZ have significant
effect on both SG–MDEA and SG–PZ. As the LAT increased (within the
studied temperature range) the SG–MDEA and SG–PZ increased. This
can be attributed to the fact that as LAT increases, the vaporization of
both MDEA and PZ increases, This is more evident in PZ. The low at-
mospheric boiling point of PZ (145 °C) as compared to MDEA (246 °C)
is another reason for the higher SG–PZ when LAT is increased. It can be
seen from Fig. 8 that as the CMDEA–PZ increases the SG–MDEA increases.
This is because an increase in MDEA concentration will lead to more

MDEA vaporization and carryover with the sweet gas. On the other
hand as CMDEA–PZ increases the SG–PZ decreases (Fig. 9). This is because
an increase in CMDEA–PZ translates to a decrease in PZ concentration.
The reduction in PZ concentration reduces the carryover of PZ with the
sweet gas. However, the effect of CMDEA–PZ was discovered to have
much more influence on SG–PZ than on the SG–MDEA (Figs. 8 and 9).

The HD has a linear relationship with both SG–MDEA and SG–PZ;
however, this effect is also more dominant in SG–PZ whereas there is no
significant effect to SG–MDEA (Figs. 8 and 9). This is because increasing
the HD decreases LAL (Fig. 6), and a decrease in LAL means there is
more free amines (PZ and MDEA) available during CO2 absorption, and
hence increased amine carryover with the sweet gas (SG–PZ than to
SG–MDEA). The effect of CO2 loading on amine volatility has been
confirmed in the literature [11]. Unlike the HD, the LAF has more in-
fluence on SG–MDEA than SG–PZ (Figs. 8 and 9). The linear relation-
ship between LAF and both SG–MDEA than SG–PZ is because an in-
crease in LAF increases the amount of amine (MDEA and PZ) molecules
in the absorber, hence the increased amine carryover. The effect of
process parameters towards SG–MDEA is ranked in the order LA-
T > CMDEA–PZ > LAF ∼ LAP> HD. For that of SG–PZ they are follow
the rank CMDEA–PZ > LAT > LAP > HD > LAF.

7.2.4. CO2 flow rate in sweet gas (SG–CO2)
The SG–CO2 is required to be very low in order to meet sales gas

specification and to also avoid possible solidification in cryogenic heat
exchangers during natural gas liquefaction. Fig. 10 displays the effect of
process parameters on the SG–CO2. It can be seen that the LAP, LAT and
HD all have inverse relationships with the SG–CO2 while the LAF has a
linear relationship with the SG–CO2. For CMDEA–PZ two regions can be
seen consisting of both linear and inverse relationship (Fig. 10).

Ordinarily, increasing LAF (increase in liquid/gas flow rate ratio)
increases both the effective interfacial area and liquid mass transfer
coefficient, hence higher CO2 capture and removal [76,65,77–79,6,71].
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However, very high flow rates becomes counter–productive because it
creates bubbles which reduce the effective interfacial area between CO2

and active amine molecules, and hence reduced mass transfer. This
scenario is the case in this study as can be seen in Fig. 10; as the LAF
increases, the SG–CO2 increases. Increasing the HD increased CO2 ab-
sorption efficiency (lower CO2 flow rate in the sweet gas) as seen in
Fig. 10 and was also stated previously in literatures [79,65,67]. This
trend is true because at higher HD the LAL reduces (Fig. 6) thereby
allowing for increased CO2 absorption.

The SG–CO2 reduced when LAT is increased because an increase in
temperature (within the temperature range of this study) increases both
the rate of reaction and the overall mass transfer coefficient [80,72].
Previous as well as recent studies have also reported the same trend for
LAT towards CO2 capture efficiency [77,7,74,81,31]. This is also ben-
eficial because higher LAT means less energy for cooling the lean amine
entering the absorber; but it is important to note that LAT is also related
to the temperature of the sweet gas. Higher sweet gas temperature
might lead to a larger energy for cooling the sweet gas most especially if
the gas is to be liquefied. Another challenge is that continuous increase
in LAT can become counter–productive and lead to an increase in the
SG–CO2 [7,74,31]. Also, very a high temperature in the absorber can
accelerate corrosion which is not desired.

Though increasing LAP reduced CO2 flow rate in the sweet gas
(increased CO2 absorption), it has no significant effect on SG–CO2. This
is particularly good because increasing LAP will increase operating cost
due to higher pumping energy. The effect of increasing the absorber
column pressure was also confirmed by previous researchers
[65,28,78]. It is noticed from Fig. 10 that as CMDEA–PZ increases, the
SG–CO2 decreases at a particular region and then increases in another
region. This nonlinearity is because when the CMDEA–PZ effect decreased
from 1 to 0.5 the effect of both PZ–CO2 interactions (kinetics) and so-
lubility dominated and hence, leading to increased CO2 absorption ef-
ficiency (reduced SG–CO2). A similar trend has also been reported in
the literature for CO2 absorption and H2S absorption [65,76,78]. Other
activators (monoethanolamine, MEA and diethanolamine, DEA)
blended with MDEA also showed the same trend [68]. Though viscosity
increased as the CMDEA–PZ decreased from 1 to 0.5 it posed no limitation
on both solubility and kinetics.

On the other hand when the CMDEA–PZ further decreased from 0.5 to
0 the CO2 absorption efficiency decreased (increased SG–CO2), though
PZ concentration is highest at 0. This can be because kinetics (PZ) took
priority as opposed to solubility (in MDEA). This can also be because
the increase in viscosity when CMDEA–PZ decreased from 0.5–0 affected
mass transfer of CO2 into the liquid phase. Also, when PZ concentration
is maximum (CMDEA–PZ is 0) the PZ vaporization is high (Fig. 9), hence
affecting the PZ contribution to CO2 absorption. The effect of process
variables towards the SG–CO2 are in this order
CMDEA–PZ > LAF > HD > LAT > LAP.

7.2.5. Amine foaming
Amine foaming during CO2 capture from natural gas stream is

mainly caused by inhibitors, organic acids and solubility of liquid hy-
drocarbons which can then lead to amine carryover to downstream
units, reduction in absorption capacity, as well as reduced mass transfer
and efficiency [14–19]. In this study, amine foaming was predicted
using the flow rate of pentane (C5) in the CO2 rich amine solution ex-
iting the absorber bottom (RA–C5).

Fig. 11 shows that LAT, LAP and HD have no significant effect on
the RA–C5 though they have a linear relationship with RA–C5. The
linear relationship is because an increase in LAP increases solubility
driving force, hence increasing the absorption of C5. On the other hand,
increasing HD reduces LAL which increases absorption efficiency. The
effect of HD on absorption efficiency can be noticed for SG–CO2 (Fig
10). However, the effect of HD on SG–CO2 outperforms its effect on
RA–C5. Previous researchers confirmed that solubility and pickup of
light hydrocarbons by amine solvents increases with amine

concentration [9,10]. This is also related to this study in which an in-
crease CMDEA–PZ increased RA–C5 (Fig. 11). This also means that, an
increase in MDEA concentration with a corresponding decrease in PZ
concentration increased RA–C5. It can be related to the fact that an
increase in CMDEA–PZ reduced LAL (Fig. 6) and a reduced LAL increases
absorption.

The LAF has a linear relationship with RA–C5 and it also has the
highest effect compared to other process parameters. This is because
increasing LAF increases the active amines in the absorber, hence in-
creasing the absorption of C5. Similar trend has been previously re-
ported [9]. The influence of different process parameters towards
RA–C5 is ranked as LAF > CMDEA–PZ > HD > LAT > LAP.

7.2.6. Methane flow rate in the sweet gas (SG–C1)
Co–absorption of methane (C1) by amine solution is not desired in

natural gas sweetening because it reduces the amount of the desired
product produced, hence affecting the cash flow of the plant. Fig 12
displays the influence of various process parameters on the SG–C1.

Fig. 12 reveals that LAF, HD and CMDEA–PZ have inverse relation-
ships with SG–C1, but the LAF has the highest impact compared to other
process parameters. This effect of LAF is because as LAF increases more
active amines are available, hence increasing C1 co–absorption which in
turn decreases the SG–C1. Similar trend was noticed for LAF effect on
RA–C5; however, the effect of LAF is higher on RA–C5 than on SG–C1.
An increase in HD decreased the SG–C1 because increasing the HD leads
to a decrease in LAL which in turn allows more absorption of methane
in the CO2 rich amine solution. The more the methane absorbed, the
lower the methane flow rate in the sweet gas. It is also important to
state that though increasing HD decreases SG–C1, its effect towards
decreasing SG–CO2 is very dominant ((Figs. 11 and 12)). In addition, an
increase in CMDEA–PZ reduced the SG–C1 which indicates that MDEA
contributes more to methane absorption than PZ. This is because an
increase in CMDEA–PZ means a decrease in PZ concentration and a cor-
responding increase in MDEA concentration.
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On the other hand, the LAP and LAT have linear relationships with
SG–C1, and the LAP has the lowest impact. This is because increasing
LAT shifts the absorption temperature farther above the dew point
temperature of C1 which then reduces its solubility and condensation in
the amine solution. It can also be because since increase in LAT in-
creases CO2 absorption (Fig. 11), then this will reduce the methane
absorption efficiency of the amine solution. It is also believed the LAP
effect on SG–C1 followed the same trend since increase in LAP increases
CO2 absorption efficiency (Fig. 11). The influence of different process
parameters towards SG–C1 is ranked as LAF>CMDEA–PZ> LA-
T > HD > LAP.

8. ANFIS prediction

The prediction ability of ANFIS based model for the dependent
process parameters are shown in the parity plots (Figs. 13–19). The
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results from both training and testing datasets are plotted in same
graph. The training was carried out with 70% of the entire datasets
(2187 datasets) while 30% (938 unused datasets) was used for the
testing. The statistical parameters for determining accuracy and preci-
sion indicate that ANFIS model accurately predicted the actual values of
the various dependent process parameters very well (Figs. 13–19).

9. Conclusions

• Results showed that the LAP has no effect on the LAL, whereas LAT
and LAF linearly related to the LAL while the HD and CMDEA–PZ had
an inverse effect on the LAL. The process parameters influence to the
LAL rank in the order: CMDEA–PZ> LAF > HD > LAT > LAP.

• From the results of this study, the impact of the independent process
parameters on RAL is in the order:
LAF > CMDEA–PZ > HD > LAT > LAP, while the influence of the
independent process parameters towards the SG–CO2 are in this
order: CMDEA–PZ > LAF > HD > LAT > LAP.

• The LAF has the highest impact on amine foaming tendency (RA–C5)
followed by CMDEA–PZ while the LAP has the lowest contribution.

• Methane flow rate in the sweet gas (SG–C1) increases with in-
creasing LAF and LAP while increasing LAF, HD and CMDEA–PZ re-
duces SG–C1. Their effect towards SG–C1 followed the trend:
LAF > CMDEA–PZ> LAT > HD > LAP.

• The influence of the investigated independent process parameters
on SG–MDEA and SG–PZ followed the order
LAT > CMDEA–PZ > LAP ∼ LAF > HD and CMDEA–PZ> LAT
> LAP > HD > LAF respectively.

• The parametric sensitivity analysis revealed that CMDEA–PZ and LAF
are very influential towards optimizing CO2 absorption efficiency,
maintaining high natural gas production rate, while controlling
amine emissions and foaming. However, LAP is the least influential
parameter. This observation is based on the range of the in-
dependent process parameters studied in this work.

• The well trained ANFIS model accurately predicted all the depen-
dent process parameters with maximum%AAD and RMSE of 2.4%
and 4.0E-03, respectively.
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