
Authentication
&

Authorization
from First Principles

Kenneth Emeka Odoh
https://kenluck2001.github.io

Table of Contents
• Basics of Cryptography
• Authentication / Authorization

• OAuth
• SAML

• Use Cases
• Summary
• Conclusions

2Kenneth Emeka Odoh

Basics of Cryptography

3Kenneth Emeka Odoh

Cryptology consist of the following fields.

● Cryptography

● Cryptanalysis

Cryptography is the process for encrypting and decrypting
messages.

Cryptanalysis is the process of recovering plaintext from the
cryptotext without the decryption key.

The holy grail of cryptography is to make cryptanalysis very
computationally infeasible.

• Stenography is the art of hiding message in medium that is not
obvious. For example, hiding information in images
{https://www.csmonitor.com/Science/2010/0630/How-Russian-spies-hid-secret-codes-in-online-photos}

4Kenneth Emeka Odoh

• Secret key cryptography
• The key cannot be made public without compromising security.

• Public key cryptography
• Each user has two keys (private key and public key), if is very difficult to get the private key

from the public key. The public key can be announced with compromising security.

Examples:

• pt: plaintext

• Ek: encryption using the key, k

• Dk: decryption using the key, k

• ct: cryptotext

ct = Ek(pt)

pt = Dk(ct)

Dk(Ek (pt)) = pt

Shared key generation: Diffie helman key exchange

5Kenneth Emeka Odoh

Message Signature

● Alice, A, wants to send a message, m, to Bob, B
● Create SA as the hash of m.
● Alice encrypts the hashed message using her private key, dA

DA (SA) = SA
dA mod nA

● Send message with signature as (EB (DA (SA)), EB(m)) to bob
● Once bob receives the message. He verifies the signature to be sure that
there are no changes in the messages.

This can provide benefits:
1. Non-repudiation
2. Auditing [4]

6Kenneth Emeka Odoh

Protocol

• Protocol is the sequence of communication steps between
entities.

• This describes the message format and position in the
sequence for message delivery and receipt between the
participating entities.

Examples of Challenge-response protocol for identification
Schnorr’s identification protocol [chapter 19, [4]]

Zero knowledge proof

7Kenneth Emeka Odoh

Authentication / Authorization

8Kenneth Emeka Odoh

• Authentication is the art of proving your identity.
• Authorization is process of granting access to an authenticated party

to allow access to a restricted resource.
• The server does not care about whom the user is but want to verify if

the person has the right credentials.
• Multi-Factor authentication (MFA)

• JSON Web Signature (JWS) - rfc7515 (ietf.org).
• JSON Web Encryption (JWE) - rfc7516 (ietf.org).
• JSON Web Key (JWK) - rfc7517 (ietf.org).
• JSON Web Token (JWT) - rfc7519 (ietf.org).

9Kenneth Emeka Odoh

HTTP Basic Authentication

Basic authentication works as follows:
1. Client sends a request to the server, the server returns a 401

and provides a way to authenticate.
2. On the client, a dialog will prompt the user for a username

and password.
3. The client sends the user’s credentials to the server, the

username and password are concatenated with a colon
separator (username:password), base64-encoded, then
added to the Authorization header like so:

Authorization: Basic base64(username:password) rfc2617 (ietf.org)
10Kenneth Emeka Odoh

Issues with Basic Authentication
• key rotation
• Delegation
• Federation
• Storage of user credentials

11

Variants of Basic Authentication
• Basic
• Digest
• Bearer (for OAuth 2.0)
• HOBA (HTTP Origin-Bound Authentication, RFC 7486, draft)
• Mutual (Mutual Authentication Protocol, draft)

Kenneth Emeka Odoh

[1]

Identity Delegation

Helping a third-party to authenticate
• access a resource on your behalf.

Roles include:
• delegator: owns the resource (resource owner)
• delegate: want to access a service on behalf of the delegator.
• service provider (resource server): host the protected resource and

validates the delegate.

12Kenneth Emeka Odoh

OAuth 2.0
• it is a delegated authorization framework. it allows scoped permissions to give

restricted access to user without the need for password.
• It separates authentication from authorization.
• Oauth1.0a and Oauth2.0 are very different and backward-incompatible.

OAuth is not an authentication framework.

Participants in the protocol
• Client
• Resource owner
• Authorization server
• Resource server

13Kenneth Emeka Odoh

14Kenneth Emeka Odoh Figure 1: Basic OAuth Protocol 1414

https://www.rfc-editor.org/rfc/rfc6749

Dissecting OAuth
• OAuth is not used for authorization.
• OAuth is also not for authentication.

Kinds of token
• Access Tokens: These are tokens that are presented to the client
• Refresh Tokens: These are used by the client to get a new access token from the Authorization

Server.

Profiles of token
• Bearer tokens
• Holder of Key (HoK) tokens

Token Format
• JWT token
• SAML token

15Kenneth Emeka Odoh

[1, 3]

16Kenneth Emeka Odoh

[2]

Mode of Operation (OAuth2 protocol)

1. Client requests authorization from Resource owner.
2. Resource owner authorizes client and delivers a grant.
3. Client presents grant to the authorization server to get a Token.
4. The Token is restricted to only access what the Resource owner

authorized for the specific Client
5. Resources (APIs) validate the Token as having the proper and

expected authorizations

17Kenneth Emeka Odoh

SAML

• Security Assertion Markup Language (SAML)
• it is an XML framework to allow identity and security info to be

shared across domains.
• Assertion is a security token

rfc7522 (ietf.org)

18Kenneth Emeka Odoh

Use Cases

19Kenneth Emeka Odoh

Google AuthSub

20Kenneth Emeka Odoh Figure 2: Google AuthSub Protocol
[2]

Single Sign-on with
Delegated Access Pattern

21Kenneth Emeka Odoh Figure 3: SSO delegated access pattern
[2]

Delegated Access using JWT

22Kenneth Emeka Odoh Figure 4: delegated access using JWT
[2]

Summary

24Kenneth Emeka Odoh

Securing your Resources
● Begin with a threat model

○ Identify the adversaries that you are protecting against, if it is a
serious adversary be ready for shock e.g heartbleed bug.

○ How long should the information be secure.

● Identify the trust model.

● Identify the computation resources for encrypting and decrypting with
minimal bottleneck.

● Reduce attack surface. Identify all attack vectors and handle the cases.

● Reduce severity of breaches with careful design. This fall into crisis
response.

● Cryptography should be used in the mix of other techniques e.g secure
coding, access control (permissions management) among others.

25Kenneth Emeka Odoh

Design Principles of
Authentication Systems

• Least privilege
• Fail-safe defaults
• Simple
• Validate access rights before granting resource
• No query about the user is an anti-pattern
• Authentication server must be performance and guarantee

availability, or it becomes a centralized bottleneck for the entire user
experience.

26Kenneth Emeka Odoh

[2]

Conclusions

• Use only well-known standard for designing authentication protocols.
• If new

• Ensure it is discussed with the community in the RFC

• Security should not be an afterthought
• Security-first philosophy is ideal for building systems

27Kenneth Emeka Odoh

References

1. API Security: A guide to building and securing APIs from the
developer team at Okta.

2. Advanced API security: Securing APIs with OAuth 2.0, OpenID
Connect, JWS, and JWE.

3. API Security: A Collection of Articles
4. A Graduate Course in Applied Cryptography by Dan Boneh and

Victor Shoup
5. Authy (https://medium.com/galvanize/fast-authorization-with-dynamodb-

cd1f133437e3)

28Kenneth Emeka Odoh

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

