
Landmark Retrieval
& Recognition

Kenneth Emeka Odoh

12th July 2018 (Kaggle Data Science Meetup | SFU Ventures Lab)
Vancouver, BC

Plan
● Bio
● Background
● Winning Solutions
● My solutions
● Conclusions
● References

Kenneth Emeka Odoh
2

Education

● Masters in Computer Science (University of Regina) 2013 - 2016
● A number of MOOCs in statistics, algorithm, and machine learning

Work

● Research assistant in the field of Visual Analytics 2013 - 2016
○ (https://scholar.google.com/citations?user=3G2ncgwAAAAJ&hl=en)

● Software Engineer in Vancouver, Canada 2017 -
● Regular speaker at a number of Vancouver AI meetups, organizer of

distributed systems meetup, and Haskell study group and organizer of
Applied Cryptography study group 2017 -

Bio

Kenneth Emeka Odoh
3

https://scholar.google.com/citations?user=3G2ncgwAAAAJ&hl=en

Background
● Competitions

○ Landmark retrieval
○ Landmark recognition

● Data Exploration
● Evaluation metric

○ Landmark retrieval
○ Landmark recognition

● Primer on information retrieval
● Approaches

○ Supervised
○ Unsupervised

Kenneth Emeka Odoh
4

Competitions
● Landmark retrieval

○ { https://www.kaggle.com/c/landmark-retrieval-challenge/overview }

● Landmark recognition
○ { https://www.kaggle.com/c/landmark-recognition-challenge/overview }

Both competitions have the following prizes

● 1st place - $ 1,250
● 2nd place - $ 750
● 3rd place - $ 500

Kenneth Emeka Odoh
5

https://www.kaggle.com/c/landmark-retrieval-challenge/overview
https://www.kaggle.com/c/landmark-recognition-challenge/overview

Data Set
Both competition share roughly similar data, but the landmark recognition
data set has label, while the landmark retrieval data set has no labels.
There is a fuzzy nature of the description of landmarks.

● 15k unique landmarks, 1M training images, 0.1M testing images.
● Images have various sizes and high resolution

Total: 329GB

Kenneth Emeka Odoh
6

Data Exploration

Figure 1: Image containing landmarks and their matchesKenneth Emeka Odoh
7

Kenneth Emeka Odoh
8Figure 2: Image containing landmarks and their mismatches (part 1)

Kenneth Emeka Odoh
9Figure 3: Image containing landmarks and their mismatches (part 2)

Approaches
● Supervised

○ neural architecture
○ Traditional machine learning models

● Unsupervised
○ Locality sensitive hashing, DFT, Wavelet

Kenneth Emeka Odoh
10

GOOGLE LANDMARK
RETRIEVAL

Kenneth Emeka Odoh
11

Evaluation Metric

Kenneth Emeka Odoh
12[Copied from competition site]

Precision is fraction of the result of a query that is relevant to the information
needs

Recall is the fraction of relevant document returned by query in relation to the total
collection of information.

Submission format

id,images
000088da12d664db,0370c4c856f096e8 766677ab964f4311
e3ae4dcee8133159...
etc.

Kenneth Emeka Odoh
13

Information Retrieval
Given a query image, v and a collection of images ID.

return a set of images, IV that are most similar to v.

V can contain zero or more landmarks.

IV = Uu ∈ ID { u | sim (u,v) ≤ threshold}
How is similarity defined?

sim (vi, vj): is the distance between images of vi, vj respectively as a proxy for the
presence of a number of common landmarks between the images.

Kenneth Emeka Odoh
14

Winning Solutions
● Represent images as vectors.
● Build a efficient searching and querying of images for matches.
● Perform query expansion

○ Most people used diffusion based query expansion described in {
https://arxiv.org/abs/1611.05113 }.

Key Glossary

● A descriptor encodes an image in a vector to allow for comparison between
images.

● Global descriptor describes the entire image. It is very general.
● Local descriptor describe patches between the entire image. It is very

specific. A group of local descriptors is required to described the entire image.
Kenneth Emeka Odoh

15

https://arxiv.org/abs/1611.05113

1st place

Kenneth Emeka Odoh
16Figure 4: 1st place solution pipeline with corresponding LB scores

1. Create vector representation of images using global descriptors using pre-trained network (ResNet,
ResNext) and a number of aggregation methods (REMAP, MAC, SPOC, RMAC).

The aggregation methods are:
● Region-Entropy based Multi-layer Abstraction Pooling (REMAP) [NOT YET PUBLISHED]
● Maximum Activations of Convolutions (MAC) { https://arxiv.org/abs/1511.05879 }
● Sum-pooling of Convolutions (SPoC) { https://arxiv.org/abs/1510.07493 }
● Regional Maximum Activations of Convolutions (RMAC) { https://arxiv.org/abs/1610.07940 }

This weighted concatenation vector, XG
XG = [2× ResNeXt+REMAP; 1.5× ResNeXt+RMAC; 1.5× ResNeXt+MAC; 1.5× ResNeXt+SPoC;
ResNet+MAC; ResNet+REMAP]

● L2 norm + whitening perform a XG.
● PCA perform a XG.

The authors claimed that PCA and whitening gave boost in query expansion.

Kenneth Emeka Odoh
17

https://arxiv.org/abs/1511.05879
https://arxiv.org/abs/1510.07493
https://arxiv.org/abs/1610.07940

2. Build efficient scheme for matching vectors to most likely query images.
The resulting image has a 4096-vectors. They perform k-nearest neighbour to identify 100 neighbours of
each test image by using L2 distance.

3. Database-side augmentation
In the training dataset, Use a image vector and 10 nearest neighbours as a weighted combination to
leverage information from neighbours.
weights = logspace(0, -1.5, 10)

4. Query expansion
Expanding search query to increase matches and improve performance.
A <-> B, and B <-> C, then A <-> C
This is a classified model that is recursive to capture long-distance connection between images, thereby
identifying images with the same landmarks.

Things that didn't work
● Difficulty handling rotated images.
● Better to ensemble at beginning than at end

Kenneth Emeka Odoh
18{ https://www.kaggle.com/c/landmark-retrieval-challenge/discussion/57855 }

https://www.kaggle.com/c/landmark-retrieval-challenge/discussion/57855

6th place
generalized-mean pooling (GeM)

{ https://www.kaggle.com/c/landmark-retrieval-challenge/discussion/58482 }

Kenneth Emeka Odoh
19

Figure 5: 6th place solution pipeline with corresponding LB scores

https://www.kaggle.com/c/landmark-retrieval-challenge/discussion/58482

11th place
Extract image features using RMAC { https://arxiv.org/pdf/1511.05879.pdf }

Each image is represented as a 2048-d feature, and the database feature is about
8GB. Compute cosine similarity for image matching.

The database side augmentation is performed by the knngraph
{https://github.com/aaalgo/kgraph }, which is fast but may not be accurate in finding the
neighbors between every database images.

We use a desktop computer with 32GB memory; uses about 40 mins to process
about 10k images in a GTX 1060 GPU

Kenneth Emeka Odoh
20

https://arxiv.org/pdf/1511.05879.pdf
https://github.com/aaalgo/kgraph

My Solution
Unsupervised Method

● Create a hash of images in binary vectors of 64 bits.
● Obtain a measure of similarity between images using hamming distance.

○ Score of 0, is identical image. However, score < 5 can represent images with distortion.

● Restrict results by thresholding to filter unnecessary images
● Perform pairwise comparisons of images to a query image and sort the score in

decreasing order.
● Choose 100 most relevant results.

Will the solution perform well in the face of rotated images and their upright
versions?

Inspired by { https://tech.okcupid.com/evaluating-perceptual-image-hashes-okcupid/ }
Kenneth Emeka Odoh

21

https://tech.okcupid.com/evaluating-perceptual-image-hashes-okcupid/

from heapq import heappop, heappush

def hammingDistance (aval ,bval):
return np.count_nonzero(aval != bval)

def getNearestList (id, cur_id, cur_avghash, avghash, c_avgheap, threshold):
ncur_avghash, navghash = convertHexToBinary (cur_avghash),

convertHexToBinary (avghash)
diffHash = hammingDistance (ncur_avghash, navghash)
if id != cur_id and diffHash < threshold:

 heappush(c_avgheap, (-1 * diffHash, cur_id)) # hamming distance,
id tuple

del ncur_avghash
del navghash
del diffHash
return c_avgheap

def solution (traindata, testdata):
avghashResultDF = pd.DataFrame(columns=["id", "images"])
for i in range(len(testdata)):

 id = testdata.loc[i]['id']
 avghash = testdata.loc[i]['avghash']
 c_avgheap = []
 for ind in range(len(traindata)):
 cur_id = traindata.loc[ind]['id']
 #average
 cur_avghash = traindata.loc[ind]['avghash']

 c_avgheap = getNearestList (id, cur_id, cur_avghash, avghash,
c_avgheap, threshold=12)
 sortedlist_avg = [heappop(c_avgheap)[1] for v in
range(len(c_avgheap))] [:100]
 idlist_avg = ' '.join(sortedlist_avg)
 avghashResultDF.loc[i] = [id, idlist_avg]
 del idlist_avg

avghashResultDF.to_csv('results/avghash.csv', encoding='utf-8',
index=False)

def getNearestAvgList (id, cur_id, chash, hashlist, c_avgheap, threshold,
ftype="geometric_mean"):

'''
 ftype="geometric_mean", "harmonic_mean", "average_mean",
"squared_root_mean"

'''
currentDiffHashList = []
diffHash = 0

for localhash in hashlist:
 nchash, nlocalhash = convertHexToBinary (chash),
convertHexToBinary (localhash)
 cdiffHash = hammingDistance (nchash, nlocalhash)
 if cdiffHash > 0:
 currentDiffHashList.append (cdiffHash)

if ftype == "geometric_mean":
 #geometric mean
 diffHash = geo_mean_overflow(currentDiffHashList)

elif ftype == "harmonic_mean":
 #harmonic mean threshold 17.5
 diffHash = len(currentDiffHashList) /
np.sum(1.0/np.array(currentDiffHashList))

elif ftype == "average_mean":
 #Avg mean threshold 18
 diffHash = sum(currentDiffHashList) / len(currentDiffHashList)
 #print "threshold {}".format(diffHash)

elif ftype == "squared_root_mean":
 #average squared root threshold 4.3
 diffHash = np.average(np.power(currentDiffHashList, 0.5))

if id != cur_id and diffHash < threshold:
 heappush(c_avgheap, (-1 * diffHash, cur_id)) # hamming distance,
id tuple

del currentDiffHashList
del diffHash
return c_avgheap

Kenneth Emeka Odoh
22

Image Hashes

Kenneth Emeka Odoh
23Figure 6: Average and DCT hashes of images

Kenneth Emeka Odoh
24

Figure 7: Difference and Wavelet
hashes of images

Locality Sensitive Hashing
hash function is a one-way function.

Hashing is the processing of taking an object and returning a unique
representation of the object. It is impossible to reconstruct the original object from
its representation.

Unlike a number of cryptographic related hashes like MD5, SHA256 e.t.c whose
aim is to generate representations that are a far as possible for objects with slight
differences. e.g

MD5 (“ken”) →”f632fa6f8c3d5f551c5df867588381ab”
MD5 (“ken.”) →”c4d8165ebd5bfa74e29f02f387b50259”
Locality sensitive hashing is generating hashes that make similar objects as close
as possible and different objects as far as possible. For more information, see {
https://blog.insightdatascience.com/elastik-nearest-neighbors-4b1f6821bd62 }

Kenneth Emeka Odoh
25

https://blog.insightdatascience.com/elastik-nearest-neighbors-4b1f6821bd62

Finding Similar Items
There are a few techniques
● shingling (convert to set of short phrase)

Use k-shingles. If k is small, the jaccard coefficient will be high even if the
documents are not similar.
● minhashing

This make use of a hash function to create a signature of the image that helps
avoid pairwise comparison of jaccard distance.

Optimizations
I could not think straight in the competition
● Try to optimize using trie.
● Create a form of locality sensitive hashing by using a linear function with

positions of the bits and hashing to a bucket.
● Exploiting triangle inequality of hamming distance with an updatable key heap

data structure.
Kenneth Emeka Odoh

26

{ http://arxoclay.blogspot.com/2011/04/implementing-trie-with-python.html } Kenneth Emeka Odoh
27Figure 8: Trie Data structure

http://arxoclay.blogspot.com/2011/04/implementing-trie-with-python.html

Discrete Fourier Transform (DFT)
DFT aims to show that any signal can be approximated by a weight combination of
trigonometric functions. This applies to both periodic signal and aperiodic signals.

Consider the example of a signal

Inverse DFT

DFT

[Thibo, 2014]Kenneth Emeka Odoh
28

Wavelet
● Fourier theory implies that a signal can be represented by sum of series of

sinusoidal curve.
● Fourier basis is localized in frequency. Little changes in the frequency domain

lead to changes everywhere in the time domain.
● While we can extract the frequency component of the signal, we lose track of

their time component. Probably, an implication of heisenberg uncertainty
principle.

● Wavelets allows for joint time-frequency representation with multiple
resolutions.

● This makes use of variable size of sliding window doing convolutions on the
signal.

● Wavelets are local in both time and frequency domain.

Kenneth Emeka Odoh
29

Kenneth Emeka Odoh
30{ http://people.ciirc.cvut.cz/~hlavac/TeachPresEn/11ImageProc/14WaveletsEn.pdf }

Figure 9: Types of Wavelet basis functions

http://people.ciirc.cvut.cz/~hlavac/TeachPresEn/11ImageProc/14WaveletsEn.pdf

{ https://www.youtube.com/watch?v=F7Lg-nFYooU }
Kenneth Emeka Odoh

31

Figure 10: Wavelet Transforms in action

https://www.youtube.com/watch?v=F7Lg-nFYooU

Kenneth Emeka Odoh
32Figure 11: Effect of scale on Wavelet basis function

Kenneth Emeka Odoh
33

Figure 12: A mathematical representation of a wavelet basis
function

Inverse wavelet transform

Basis function

Forward wavelet transform
(wavelet coefficient)

Continuous Wavelet Transformation

Kenneth Emeka Odoh
34{ http://people.ciirc.cvut.cz/~hlavac/TeachPresEn/11ImageProc/14WaveletsEn.pdf }

http://people.ciirc.cvut.cz/~hlavac/TeachPresEn/11ImageProc/14WaveletsEn.pdf

Discrete Wavelet Transformation

Forward wavelet transform
(wavelet coefficient)

Inverse wavelet transform

Kenneth Emeka Odoh
35{ http://people.ciirc.cvut.cz/~hlavac/TeachPresEn/11ImageProc/14WaveletsEn.pdf }

http://people.ciirc.cvut.cz/~hlavac/TeachPresEn/11ImageProc/14WaveletsEn.pdf

Kenneth Emeka Odoh
36

Figure 14: Fast wavelet transformFigure 13: Shifting the basis function
over the signal

Transfer learning
This is an attempt to use the method applied for the Landmark recognition
competition to solve the landmark retrieval competition.

Given that the data for Landmark recognition competition has label can be
solved by supervised learning.

The data for the Landmark retrieval competition is without labels.

● Create a neural network model for Landmark recognition. Optimize the
network for maximum performance. Save the model.

● Load the model and pass the unlabelled data of Landmark retrieval
competition as input through the model to create one-hot encoding with
dimension of size of data x number of unique labels.

Kenneth Emeka Odoh
37

● The lower embedding space of the one-hot encoded matrix can be used for
subsequent clustering.

● Each column can be taken to be the list of images containing that label.
● Each query image result in a one-hot encoded vector with size as number of

unique labels. Get the max value and position which identifies the predicted
label.

● Perform a form of clustering that feels like flood filling while incrementing the
threshold by creating a query interval on the max value and query all
matching images using the position information. This optimization helps to
reduce computational time with little or no loss of predicted performance.

● If necessary, perform clustering in batch if one-hot vector cannot be loaded in
memory

● See the code for details.

Kenneth Emeka Odoh
38

from heapq import heappop, heappush
import numpy as np
from keras.models import load_model
import cv2
import os
import gc
"""
Xtrain: is the list of dictionary image
Xtest: is a list of image that is a query to get a
list of training

Both matrices are output of neural networks.

XtestIDs: list of Xtest ids
XtrainIDs: list of Xtrain ids
"""
def getSortedResult (y, sortedy, XtrainIDs, res):

for sindx in sortedy:
 score = y[sindx]
 cur_id = XtrainIDs [sindx]
 heappush(res, (-1 * score, cur_id)) #
distance, id tuple

return res

def matchingIndexOfSingleRecord (X, pind,
pval):

"""
X, Xtrain is the prediction matrix, pind

is the max predict value column index in a rows
of X, pval is the max predict value column
element in a rows of X

"""
#get a column of the matrix
y = X[:, pind] # array([0.91147624,

0.0760729 , 0.10286262, 0.74501551,
0.16317767, 0.94554172])

totalArrIndx = np.array([])
#query intervals
threshold = 0.01
limit = 100
while threshold < 1.0:
 queryIndices =
np.where((y>=pval-threshold) &
(y<=pval+threshold))[0] #array([0, 3])
 totalAr = np.append(queryIndices)
 threshold = threshold + 0.01
 if len (totalArrIndx) > limit:
 break
return y, totalArrIndx

Kenneth Emeka Odoh
39

def matchingElementOfSingleRecord (y, queryIndices,
XtrainIDs):

res = []
res = getSortedResult (y, queryIndices, XtrainIDs,

res)
sortedlist = [heappop(res)[1] for v in range(len(

res))]
return sortedlist

def getDataTrain(model):
x_train = []
x_trainids = []
ListOfFiles = os.listdir('./data/recog/train_dir')
for filename in ListOfFiles:
 img =
cv2.imread('data/recog/train_dir/{}'.format(filenam
e))
 x_train.append(cv2.resize(img, (224, 224)))
 idval = filename.split()
 idstr = "".join(idval[:-1])
 x_trainids.append(idstr)
x_train = np.array(x_train, np.float16) / 255.
Xtrain = model.predict(x_train, batch_size=128)
return Xtrain, x_trainids

def matchingRecords (Xtest, Xtrain, XtrainIDs,
XtestIDs):

pindlist = np.argmax(Xtest, axis=1).tolist()
pvallist = np.amax(Xtest, axis=1).tolist()
subm = pd.DataFrame(columns=["id", "images"])
total = Xtest.shape[0]

for ind, pind, pval in enumerate (zip(
pindlist, pvallist)):

 y, queryIndices
=matchingIndexOfSingleRecord (Xtrain, pind,
pval)

 sortedres =
matchingElementOfSingleRecord (y,
queryIndices, XtrainIDs)

 subm.loc[ind] = [XtestIDs[ind],
sortedres]

 print "test data #{} of {} --
{}".format(ind+1, total, XtestIDs[ind])

subm.to_csv('output/submissionretrieval.csv.gz
', compression = 'gzip', index=False)

print('Done!')

Kenneth Emeka Odoh
40

def getDataTest(model):
x_test = []
x_testids = []
ListOfFiles =

os.listdir('./data/recog/test_dir')
for filename in ListOfFiles:
 img =
cv2.imread('data/recog/test_dir/{}'.format(f
ilename))
 x_test.append(cv2.resize(img, (224,
224)))

 idval = filename.split()
 idstr = "".join(idval[:-1])

 x_testids.append(idstr)
x_test = np.array(x_test, np.float16) / 255.

Xtest = model.predict(x_test,
batch_size=128)

return Xtest, x_testids

if __name__ == "__main__":
#point to load model from recognition

challenge model
model = load_model('models/submit1.h5')

Xtrain, XtrainIDs = getDataTrain(model)
Xtest, XtestIDs = getDataTest(model)

#prepare for submission
matchingRecords (Xtest, Xtrain, XtrainIDs,

XtestIDs)

Kenneth Emeka Odoh
41

GOOGLE LANDMARK
RECOGNITION

Kenneth Emeka Odoh
42

Evaluation Metric
Global Average precision (GAP) is also known as micro Average Precision

Kenneth Emeka Odoh
43[Copied from competition site]

Submission format

id,landmarks
000088da12d664db,8815 0.03
0001623c6d808702,
0001bbb682d45002,5328 0.5
etc.

Kenneth Emeka Odoh
44

Winning Solutions
● Get global descriptor to get general features

● Use local descriptors to get local feature and
improve the recognition.

Kenneth Emeka Odoh
45

3rd place
● Same as in 6th place (Landmark retrieval competition)

● Generalized mean pooling provides CNN-based global descriptors which provides vector and
perform knn.

● Perform IDF-like norm on the vector per class.

● Exploit geometric information in crafting local descriptors using DELF features and ASMK with
built-in inverted file structure for fast querying.

● More detailed description is found here
{https://drive.google.com/file/d/1NFhfkqKjo_bXM-yuI3KbZt_iHRmiUyTG/view}

Delf { https://arxiv.org/abs/1612.06321 }

Geometric verification { http://www.robots.ox.ac.uk:5000/~vgg/publications/2007/Philbin07/philbin07.pdf }
ASMK {https://hal.inria.fr/file/index/docid/864684/filename/iccv13_tolias.pdf }

{ https://www.kaggle.com/c/landmark-recognition-challenge/discussion/60112 }

Kenneth Emeka Odoh
46

https://arxiv.org/abs/1612.06321
http://www.robots.ox.ac.uk:5000/~vgg/publications/2007/Philbin07/philbin07.pdf
https://hal.inria.fr/file/index/docid/864684/filename/iccv13_tolias.pdf
https://www.kaggle.com/c/landmark-recognition-challenge/discussion/60112

4th place
1. The author used a number of pretrained (ResNet34, ResNet50, ResNet101, ResNet152,
ResNeXt101, InceptionResNetV2, DenseNet201).

● They performed data preprocessing cropping to 224 x 224, resizes, scales, shifts,
rotates,and flips.

● initially 128 x 128 crops and then increased crop size up to 256 x 256.
● CNN training using fast.ai library.

2. Use data from landmark retrieval and train a ResNet50 to classify images as either being
from the retrieval challenge or the recognition challenge.
A simple heuristic: if is_from_another_competition_probability > 0.95: confidence *= 0.1;

3. Train a ResNet50 to classify images as images with landmark or no landmark. The
heuristics is same as in step 2.

Kenneth Emeka Odoh
47

4. A trick to improve result

● Convert images to vectors using pre-trained network
● For each image from test set they found K closest images from train set (K=5)
● For each class_id we computed: scores[class_id] = sum(cos(query_image, index) for

index in K_closest_images)
● For each class_id we normalized its score: scores[class_id] /= min(K, number of

samples in train dataset with class=class_id)
● label = argmax(scores), confidence = scores[label]

Kenneth Emeka Odoh
48

5. kNN with features from local crops
● Obtain 100 local crops from the image.
● Filter crops without landmark by identifying crops with landmarks using step 3.
● They used the technique at step 4 with K=20 for every local crop from query image (this

is an image from test dataset).
● For every image from the test set they got a set of local crops (up to 100) and a list of

pairs (label, confidence) for each crop.
● "For each class_id we computed its score as a sum of 5 - class rank for each crop.

Class rank means the position of this class_id in the sort order of pairs (label,
confidence)."

● "If at least one class rank was 5 or more, then we reset the entire sum. Thus, based on
this technique we were able to choose approximately one thousand examples with high
confidence in our prediction."

Kenneth Emeka Odoh
49

Merging:
They had used these heuristics:

● "Compute confidence score for each label using predictions from steps 1-4 as follow:
score[label] = label_count / models_count + sum(label_confidence for each model) /
models_count. Here label_count is a number of models where the prediction with max
confidence is equal to the label".

● "We also used each prediction from step 5 with confidence = 1 +
confidence_from_step_5 / 100"

{ https://www.kaggle.com/c/landmark-recognition-challenge/discussion/57896 }

Kenneth Emeka Odoh
50

https://www.kaggle.com/c/landmark-recognition-challenge/discussion/57896

10th place
1. The author created a number of neural architectures (ResNet, Wide ResNet,
Inception-v3, DenseNet).

The training time augmentation include random resized crops, color jittering,
horizontal flipping. CNNs were trained on 224x224 crops.

2. They trained their model using ArcFace loss { https://arxiv.org/abs/1801.07698 }.

3. inference step, Obtain a centroid of each class
● Get a sample of 100 image from each training class.
● Calculate the mean vector
● Normalize the vector

Kenneth Emeka Odoh
51

https://arxiv.org/abs/1801.07698

They did test time augmentation by averaging 10 crops giving a boost of 0.1 GAP.

● An image is passed as input
● This output a vector which is compared to all centroid by cosine distance.
● The class of the nearest centroid becomes the class of the image.
● If the distance value > 0.25 then the image has no landmarks.

4. Ensemble by majority voting

{ https://www.kaggle.com/c/landmark-recognition-challenge/discussion/58050 }

Kenneth Emeka Odoh
52

https://www.kaggle.com/c/landmark-recognition-challenge/discussion/58050

My Solution
● Due to huge data size, perform stratified sampling with 50 images per label as

the training data.
● Best performing model on a littled sample was using pre-trained network with

inception v3.
● Keep the first 249 layers frozen, and add a dense network with a few batch

normalization subsequently matching the number of unique labels in the
softmax layer.

● Unbalanced data set
{https://www.kaggle.com/c/landmark-recognition-challenge/discussion/55569}

● Handling >15000 labels in a neural network?
○ Hierarchical softmax
○ Negative sampling

● Given the number of parameters and inception v3 requiring 224 x 224 images
as input. We run out of computational resources.

Kenneth Emeka Odoh
53

Predicting Images With no Labels
The softmax layer at the tail of a neural architecture
produces a one-hot representation which is a
approximation of the probability distribution.

However, an image without a label is likely to belong
to every label in the one-hot encoding vector. This is
when the entropy is at the highest.

With careful thresholding, it is possible to identify
instances with no labels. The best value of the
threshold can be obtained by hyperparameter search.

This is a way of achieving multi-label classification.

Kenneth Emeka Odoh
54

Figure 15: Entropy vs probability
[Image: Wikipedia]

Practical Considerations
● Parallelism / Concurrency (Python-specific)

○ By model e.g mergesort
○ By data

■ For process-bound compute use multiprocessing to parallelize
your solution.

■ For IO-bound
● Use asyncio for Python 3
● Use gevent or greenlet event-based processing in Python 2

Kenneth Emeka Odoh
55

{ https://drive.google.com/file/d/1vv-GoTGD1LYLq9QK9EW4NXGgspNp3ZSL/view }
Kenneth Emeka Odoh

56

Figure 16: Parallelism vs Concurrency

https://drive.google.com/file/d/1vv-GoTGD1LYLq9QK9EW4NXGgspNp3ZSL/view

● Batch processing
● Careful coding

○ Unallocate memory as soon as possible.
○ Avoid copying as much as possible. Do things in-place wherever

necessary.
○ Vectorize wherever possible.
○ Disable GUI window. If necessary

● Use JIT (pypi) if you need to squeeze out more performance. At the
moment of writing this tutorial, support for numpy is not clear.

Kenneth Emeka Odoh
57

import multiprocessing
from multiprocessing import Pool

def solution (traindata, testdata):
.
.
.
return resultDF1, resultDF2

def convertToParallelSolution (ind, traindata, testdata, numOfProcesses):
totalnumberOfSamples = len(testdata)
numOfBins = round (totalnumberOfSamples / numOfProcesses) + 1
start = int (ind * numOfBins)
end = int (start + numOfBins)
result = ()
if end >= totalnumberOfSamples:

 end = totalnumberOfSamples
if end <= start:

 return result
if end > start:

 result = solution (traindata, testdata[start : end].reset_index())
return result

Kenneth Emeka Odoh
58

def parallel_solution (traindata, testdata, numOfProcesses=64):
pool = Pool(processes=numOfProcesses) # start 64 worker processes
launching multiple evaluations asynchronously *may* use more processes
multiple_results = [pool.apply_async(convertToParallelSolution, args=(ind, traindata,

testdata, numOfProcesses,)) for ind in range(numOfProcesses)]
tresultDF1 = pd.DataFrame(columns=["id", "images"])
tresultDF2 = pd.DataFrame(columns=["id", "images"])
for res in multiple_results:

 rowObj = res.get()
 if rowObj:
 resultDF1, resultDF2 = rowObj
 tresultDF1 = pd.concat([tresultDF1, resultDF1])
 tresultDF2 = pd.concat([tresultDF2, resultDF2])

#write to file
tresultDF1.to_csv('tresultDF1.csv', encoding='utf-8', index=False)
tresultDF2.to_csv('tresultDF2.csv', encoding='utf-8', index=False)

if __name__ == "__main__":
traindata = pd.read_csv('input/trainDp2.csv')
testdata = pd.read_csv('input/testDp2.csv')
print "Data is fully loaded"
parallel_solution (traindata, testdata)

Kenneth Emeka Odoh
59

Conclusions
● Unsupervised learning can be difficult.
● Transfer learning is here to stay.
● CNN in its many variants are the state of the art in implicit or explicit

object recognition.
● Representation learning is very important in learning.
● The use of magic number can be obtained by forms of leaderboard

probing.
● Even with deep learning, you still need some feature engineering.

Kenneth Emeka Odoh
60

Thanks for listening
@kenluck2001

 https://www.linkedin.com/in/kenluck2001/

kenneth.odoh@gmail.com

https://github.com/kenluck2001?tab=repositories

Kenneth Emeka Odoh
61

https://www.linkedin.com/in/kenluck2001/
https://github.com/kenluck2001?tab=repositories

References
1. https://pymotw.com/2/threading/
2. https://stackoverflow.com/questions/3044580/multiprocessing-vs-threading-python
3. https://askubuntu.com/questions/668538/cores-vs-threads-how-many-threads-should-i-run-on-this-m

achine
4. http://people.ciirc.cvut.cz/~hlavac/TeachPresEn/11ImageProc/14WaveletsEn.pdf
5. https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
6. ResNext code, https://github.com/facebookresearch/ResNeXt
7. https://drive.google.com/file/d/1NFhfkqKjo_bXM-yuI3KbZt_iHRmiUyTG/view
8. Thibos L.N, Fourier analysis for beginners, 2014
9. http://infolab.stanford.edu/~ullman/mmds/book.pdf

Kenneth Emeka Odoh
62

https://pymotw.com/2/threading/
https://stackoverflow.com/questions/3044580/multiprocessing-vs-threading-python
https://askubuntu.com/questions/668538/cores-vs-threads-how-many-threads-should-i-run-on-this-machine
https://askubuntu.com/questions/668538/cores-vs-threads-how-many-threads-should-i-run-on-this-machine
http://people.ciirc.cvut.cz/~hlavac/TeachPresEn/11ImageProc/14WaveletsEn.pdf
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://github.com/facebookresearch/ResNeXt
https://drive.google.com/file/d/1NFhfkqKjo_bXM-yuI3KbZt_iHRmiUyTG/view
http://infolab.stanford.edu/~ullman/mmds/book.pdf

