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ABSTRACT
Recent work by Reviriego et al. [12] has shown susceptibility to
privacy leaks for elements stored in the Bloom Filter due to the
possibility of recovery attacks despite the indirection (unlinkability)
afforded by the underlying hash functions. As a result, we intro-
duced a data structure known as UltraFilter to allow for approximate
set membership checks without the pre-existing privacy issues in
the standard Bloom filter by employing differential privacy. We
provide a threefold contribution: First, we achieve tunable privacy
by modifying the noise, ε , to adjust the reconstruction error that
trades off utility for privacy protection in UltraFilter. Second, we
provide a set of proofs to validate our formulation and a working
implementation 1 for easy replication. Finally, we demonstrate the
usefulness of our formulation in an ablation study.
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1 INTRODUCTION
The Bloom Filter is a succinct data structure well-suited for appli-
cations requiring quick lookups with compact storage. Similarly,
the Bloom filter has attractive properties, including efficient data
representation and versatility. Hence, this data structure has ap-
plications in caching, database management, and other areas. Our
work differs from private membership testing [10] related to private
information retrieval [4], leaking data in client-server settings. In
our construction, the internal bit-array gets randomized to reduce
the linkability of stored elements in the bit-array where privacy
leaks have been demonstrated [12] despite using a one-way hash-
ing function in the Bloom filter. UltraFilter (B̂F ) is a construction

1Source code: https://github.com/kenluck2001/miscellaneous/tree/master/src/bloom
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that resolves the privacy limitations of standard Bloom filters by
incorporating differential privacy.

1.1 Contributions
We have provided an implementation of UltraFilter and Standard
Bloom filters as part of this manuscript, along with empirical eval-
uation. Our work is validated by mathematical proof showing the
theoretical bounds on the pairwise distance between item pairs
formulating a closed-form formulation of the reconstruction error,
which allows for a tunable level of achievable privacy protection
required to mitigate the privacy vulnerability discussed in Reviriego
et al. [12] as shown in Definitions 6.1, 6.2. Furthermore, we have
demonstrated in Claim 1 that the item insertion algorithm in Ultra-
Filter is an ϵ-differential privacy scheme. Then, we provide theoret-
ical upper bounds on the false positive and false negative rates for
UltraFilter and Standard Bloom Filter in Subsection 6.3.

1.2 Differential Privacy
Add noise, ε , to obfuscate data, guaranteeing individual privacy
even with public information release as shown in Definition 1.1.

Definition 1.1. (Differential Privacy) Following Definition 7 [7],
for every pair of the datasets (D, D ′), noise, ε , and a randomizer,M
satisfies P(M (D) ∈ O) ≤ eεP (M (D ′) ∈ O)

1.3 Bloom Filter
The Bloom filter (BF ) [2] is a probabilistic data structure that sup-
ports efficient membership testing, insertion, and lookup operations.
While the standard Bloom filter lacks efficient deletion support due
to the cost of rebuilding the filter, it offers compact storage and
efficient query times. Standard Bloom filter (BF ) has anm-sized bit-
array with each bit position for storing elements, n is the maximum
storage capacity, and l is the number of independent hashes. Hi
sampled from a family of hash functions with a domain [0,m − 1]
with ∀i ∈ 1...l . The supported operations: Insertion, Lookup, and
Randomization are in Algorithms 1, 2, and 3.

2 RELATEDWORK
The set of algorithms supported by the Standard Bloom Filter [2]
lacks a mechanism for efficient deletion. Subsequent research re-
sulted in the development of Cuckoo Filter [8] data structure that
provides deletion in addition to insertion and lockup already sup-
ported in the Standard Bloom Filter. Standard Cuckoo Filter uses
a fixed bit-array size for storing elements. In contrast, Dynamic
Cuckoo Filter [3] adopts a variable-sized array for increased data
management flexibility. Xor Filter [11] is a variant of the bloom
filter that provides superior computational efficiency in terms of
space and time complexity compared to the standard bloom [2] and
Cuckoo filters [3]. Hybrid data structures can be constructed using
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a standard Bloom filter (or other variants) as an auxiliary structure
for building higher-level data structures. One such example is the
multidimensional Bloom filter [5], which supports the hierarchical
querying of stored items.

The construction and design of the Bloom filter is an active
area of research with works such as the invertible Bloom filter [9]
that allows key-value construction for better flexibility in data
management of stored elements. Many Bloom filters have privacy
vulnerabilities that motivated Reviriego et al. [12] to show how the
privacy vulnerability of the Bloom filter can influence the success of
reconstruction attacks in their work. As a result, our work focuses
on mitigating these privacy issues by employing differential privacy
in the design of the UltraFilter. Another related development [6]
has added a time-decaying constraint for storing elements in the
Bloom filter. Furthermore, another work [1] on private bloom filter
shares similar by utilizing flipping probabilities for randomizing bit
arrays on item insertion. Our work differs by providing a unique
parametrization of parameters on a sigmoid function. Furthermore,
we have shown simplifiedmathematical proofs and robust empirical
evaluations to highlight the technical characteristics of UltraFilter.

3 EXPERIMENT
We generated millions of random strings of 50 characters each. The
choice of text size is arbitrarily chosen and standardized throughout
our experiments. As a result, we created a balanced dataset with
an equal pair of positive (items saved in bloom filter) and negative
(items not stored in bloom filter) set for every experiment in this
work. We displayed the technical characteristics of the bloom filter
in Tables 1, 2, 3,and 4.

The primary evaluation metric for our experiments is the F1-
score utilized due to its ability to measure combined precision and
recall. UltraFilter (Bloom filter) exhibits high performance charac-
teristics when F1-score ≈ 1. On the contrary, the data structure
reflects poor performance dynamics when the F1-score ≈ 0. Addi-
tionally, we define the occupancy ratio,φ, as the number of elements
stored divided by the total storage capacity, n, of the Bloom filter
(UltraFilter).

First, we experimented to study the effect of increasing noise,
ε , on UltraFilter at maximum capacity, n = 220, and bit-array size,
m = 224, number of hash functions, l = 10, with other parameters
kept constant as shown in Table 1. At a lower value of ε , we observed
a reduced F1 score. Second, we analyzed the interaction effect of
occupancy ratio, φ, over a range of noise, ε , on UltraFilter (Standard
Bloom Filter) with performance metrics as shown in Tables 2, 3
and 4 respectively. The parameter, φ, is progressively increased
with other settings and kept constant.

The mathematical notations utilized in this work are as follows:
FPBF , FPB̂F for the false positive rate of standard bloom filters (BF )
and UltraFilter (B̂F ) respectively. Similarly, FNBF and FNB̂F for the
false negative rate of typical bloom filters (BF ) and UltraFilter (B̂F ).
More evaluation metrics are depicted as F1BF , F1B̂F for F1-score
for Standard Bloom filter and UltraFilter. Furthermore, we adopt the
convention for evaluation score at preset noise, ε depicted as F1ε

B̂F
,

FPε
B̂F

, FN ε
B̂F

are F1-score, false positive rate, and false negative rate
at target noise, ε .

Figure 1: Noise Level, ε , versus F1-score

Figure 2: Occupancy ratio, φ, over noise, ε , range versus F1-
score

4 DISCUSSION
We have observed that when noise, ε = 0 (perfect secrecy), it results
in worsening performance (F1-score) because sampling probabil-
ity is 1

2 limiting the amount of information that is storable in B̂F .
Despite the drop in F1-score within reasonable values of ε , the per-
formance of UltraFilter is competitive with Standard Bloom filter
as it provides privacy protection as shown in Figure 1 and Table 1.
We can improve the F1-score by increasing the noise, ε . However,
once the threshold ε ≥ 5 gets reached, the effect of higher noise is
negligible on the F1-score due to our choice of sigmoid function
for parametrizing the noise to the probabilistic bit flipping of the
bit-array (B̂F ). We also noticed that the FPBF = 0.06 and FNBF = 0
remained constant throughout the experiment and are shown in
Table 1. Based on experimental results, we suggested setting noise,
ε ∈ (0, 5) for most practical purposes.
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The performance of UltraFilter degrades as the magnitude of
noise, ε , becomes smaller as captured in Tables 1, 2. Similarly, the
occupancy ratio, φ, is inversely proportional to the F1-score in the
Standard Bloom filter and UltraFilter. This proportionality effect
is observed as follows: when storing a small number of items in
a large capacity Bloom filter, uncertainty is reduced, leading to
a higher F1-score. However, when we are at the limits of the fil-
ter storage capacity, n, hence, the performance metric degrades
as shown in Figure 2 and Table 2. False negative, FNB̂F remain
constant when the occupancy ratio, φ, is increased as other factors
are kept constant in UltraFilter as seen in Table 3. False positive
is directly proportional to the occupancy ratio, φ. At lower noise,
ε , FPBF is higher than FPB̂F due to the squeezing effect of the
sigmoid function in probabilistic flipping thereby giving rise to
increased FNB̂F , whereas FNBF = 0. Consequentially, when ε ≥ 5,
then FPBF ≈ FPB̂F as described in Table 4.

Our evaluation considers the case where the bloom filter is
preloaded with data and then randomized, and subsequent query-
ing can happen. At higher noise, ε , due to smaller flipped bits, it is
possible to update the bit-array (B̂F ) with new item insertions after
randomization. On the contrary, at lower noise, ε , it can be chal-
lenging to update the bit-array (B̂F ) after randomization because
of more flipped bits. As a result, repeated insertions can impact the
reasoning between privacy losses and utility. Another option is to
store the original bit-array (BF ) for future copying. Subsequently,
insertions are made only in the bit-array (BF ) and randomized on
every input to create bit-array (B̂F ). However, repeated copying of
the bit-arrays (BF to B̂F ) may not be ideal for every application.
Conversely, based on our design implementation, the functionality
of UltraFilter is limited to ASCII 2 string, so it may not work well for
languages with wide-character sets 3. Future work would improve
on this known flaw.

5 CONCLUSION & LIMITATIONS
The work prevents privacy violations of storage bits on a Standard
Bloom using a simple binary DP mechanism. UltraFilter performs
slightly less than the Standard Bloom filter but offers higher pri-
vacy guarantees, thereby trading utility for privacy. False negatives
are not allowed in the Standard Bloom filter. On the contrary, Ul-
traFilter has higher false negatives in connection with the noise
level, ε , as it incurs some performance while increasing privacy
levels. Finally, the Bloom filter is a widely used data structure for
approximate set membership in diverse applications. Our evalua-
tion is limited to testing UltraFilter on random text deviating from
real-world settings where a uniform distribution may not suffice.
Finally, following the proofs in Section 6, we have demonstrated
the robustness of our solution to the privacy issues identified in
Reviriego et al. [12].
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6 APPENDIX
6.1 Tables

S/N ε FPB̂F FNB̂F F1B̂F
1 0 0.03 0.5 0.652
2 5 0.06 0.007 0.967
3 10 0.061 3.72e-5 0.97
4 15 0.061 0 0.97
5 20 0.061 0 0.97
Table 1: Noise, ε , on UltraFilter

S/N φ F1BF F11
B̂F

F12
B̂F

F13
B̂F

F14
B̂F

1 0.2 0.994 0.84 0.931 0.97 0.985
2 0.4 0.988 0.836 0.926 0.964 0.979
3 0.6 0.982 0.832 0.921 0.959 0.973
4 0.8 0.976 0.827 0.915 0.953 0.967
5 1.0 0.97 0.823 0.911 0.948 0.962

Table 2: Occupancy ratio, φ , over a range of
noise, ε , on UltraFilter (Standard Bloom fil-
ter) (F1-score)

S/N φ FNBF FN 1
B̂F

FN 2
B̂F

FN 3
B̂F

FN 4
B̂F

1 0.2 0 0.269 0.12 0.047 0.018
2 0.4 0 0.269 0.119 0.0479 0.018
3 0.6 0 0.269 0.119 0.047 0.018
4 0.8 0 0.269 0.12 0.047 0.018
5 1.0 0 0.269 0.119 0.0475 0.018

Table 3: Occupancy ratio, φ , over a range of noise, ε ,
on UltraFilter(Standard Bloom filter) (FN-score)

S/N φ FPBF FP1
B̂F

FP2
B̂F

FP3
B̂F

FP4
B̂F

1 0.2 0.012 0.009 0.011 0.012 0.012
2 0.4 0.024 0.018 0.021 0.023 0.024
3 0.6 0.037 0.027 0.032 0.035 0.036
4 0.8 0.049 0.035 0.043 0.047 0.048
5 1.0 0.06 0.044 0.053 0.058 0.059

Table 4: Occupancy ratio, φ , over a range of
noise, ε , onUltraFilter(StandardBloomfilter)
(FP-score)

6.2 Algorithms
The underlying algorithms for UltraFilter in Algorithms 1, 2, and 3.
Algorithm 1 Insertion of Data
Require: data, x , bloom filter array, BF , and hash family, H
Ensure: BF
1: for i ← 1 to l do
2: hi ← Hi (x )
3: BF [hi ] = 1
4: end for

Algorithm 2 Lookup of Data
Require: data, x , Ultrafilter array, B̂F , and hash family, H
Ensure: ispresent Check if the element is present in a set
1: ispresent ← T rue
2: for i ← 1 to l do
3: hi ← Hi (x )
4: if B̂F [hi ] == 0 then
5: ispresent ← False
6: end if
7: end for
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Algorithm 3 Randomizer
Require: bloom filter array, BF , and noise level, ε
Ensure: B̂F
1: Flip bit positions in BF by setting to 1 with probability eε

eε +1 .
2: Copy BF into B̂F .

Definition 6.1. The estimation of hamming distance between
adjacent vectors is bounded by |M (BF (x )) −M ( ˆBF (x )) | ≤ eε

eε+1m

where x is the input data with (BF (x ), ˆBF (x )) showing the configu-
rations of the storage bit array of the bloom filter.

Proof: We ensure that ˆBF (x ) is one of every possible neigh-
bor bit array configuration after applying a DP transformation on
BF (x ). ˆBF (x ) is only one transformation away from BF (x ). The
neighborhood transformation is employed on the level of a bit ar-
ray rather than on individual storage bits. Based on observation
of the bits that are flipped at most during randomization where
Ham(BF (x ), ˆBF (x )) is the hamming distance between a pair of ad-
jacent vectors, (BF (x ), ˆBF (x )) and n is array length respectively. A
case of adjacency relation between a pair of vectors( BF , ˆBF (x ))
where ˆBF (x ) is the randomized vector, BF (x ). An attacker aiming
to reverse engineer the original vector after randomization would
incur the reconstruction error, e where e = Ham(BF (x ), ˆBF (x ))

m as
shown in Equation 1. Tuning the noise, ε can impact the reconstruc-
tion error, influencing the achievable privacy levels.

Ham(BF (x ), ˆBF (x )) ≤
eε

eε + 1
m (1)

Where Ham(BF (x ), ˆBF (x )) is the hamming distance between a
pair of adjacent vectors, (BF (x ), ˆBF (x )) andm is array length.

Definition 6.2. The estimation of hamming distance between
adjacent vectors is bounded by |M (BF (x )) −M ( ˆBF (y)) | ≤ m or
|M (BF (x )) − M (BF (y)) | ≤ m or |M ( ˆBF (x )) − M ( ˆBF (y)) | ≤ m

where every distinct data pairx ,y is the input datawith (BF (x ), ˆBF (y))
showing the configurations of the storage bit array of the bloom
filter.

Proof: By observation, for every distinct pair x ,y, the hamming
distance is upper bounded by the size of the bit array of the bloom
filter as shown in Equation 2.

Ham(BF (x ), ˆBF (y)) ≤ m (2)
Equation 2 holds similarly forHam(BF (x ), ˆBF (y)), Ham( ˆBF (x ),BF (y)),

or Ham( ˆBF (x ), ˆBF (y)).

Claim 1: Algorithm 3 is ε-differentially-private
Proof: Let us define the bloom filter array as BF vector before

randomization and B̂F after randomization. The BF vector is ran-
domized by flipping bits using the probability of random bits, B,
defined in Equation 3.

Pr(B = 1) =
eε

eε + 1
, Pr(B = 0) =

1
eε + 1

(3)

For every pair of data as x ,y with each pair of neighboring stor-
age bitset array depicted asBF1,BF2 withHam(BF1 (x ),BF2 (y)) ≤ k
where differential private mechanism,M is used to transform a bit
set array (BF1,BF2).

P(M (BF1 (x )) ∈ O) ≤ ekεP (M (BF2 (y)) ∈ O) + kδ (4)

Case 1: Following Equation 4, x and y are the same data. (BF1 is
BF and BF2 is B̂F ) or (BF2 is BF and BF1 is B̂F ). Hence, the value of
k is set to eε

eε+1m which is a tighter bound following Definition 6.1.
As a result, Equation 4 still holds.

Case 2: Following Equation 4, x and y are the different data.
Every other case except ((BF1 is BF and BF2 is B̂F ) or (BF2 is BF
and BF1 is B̂F )) already covered in Case 1. We have considered the
worst-case bound for the value of k set tom following Definition 6.2.
As a result, Equation 4 still holds.

Deduction: Finally, fixing δ = 0, then Equation 4 can be rewritten
as

−kε ≤ ln
M ( ˆBF (x )))

M (BF (y))
≤ kε

for every pair x ,y ∈ O . Thus, Algorithm 3 is a differentially-private
mechanism whereM is a randomizer.

6.3 Lower Bound estimate of False Positive
Rate, FP , and False Negative Rate, FN

Due to the probabilistic flipping of bits in UltraFilter, FPB̂F has a
higher value than FPBF with the parameters set constant for both
estimations as shown in Table 1. The lower bound estimates of False
Positive Rate are presented in Equation 5 and Equation 6. Hence,
for a standard bloom filter, false negatives are rare FNBF = 0.
Alternatively, UltraFilter permits false negatives, FNB̂F , as seen in
Tables 1. Lower bound estimates of False Negative Rate exhibited
in Equation 7 and Equation 8.

p is the flipping probability where

q = 1 − p, φ (p,m) = 1 −
p

m
and the parameters defined as n is the number of records in bloom
filter, l is the number of hash functions, andm is the size of bloom
filter B̂F ,BF as shown in Equations 5, 6, 7 and 8.

p = 1

FPBF =
(
1 − φ (p,m)nl

)l
(5)

p =
eε

eε + 1

FPB̂F =
(
1 − φ (p,m)nl

)l (6)

p = 1,q = 0

FNBF =
(
1 − φ (q,m)nl

)l
FNBF = 0

(7)

p =
eε

eε + 1

q =
1

eε + 1

FNB̂F =
(
1 − φ (q,m)nl

)l
(8)
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