
SALT IDENTIFICATION

CHALLENGE

Kenneth Emeka Odoh

15th Nov 2018 (Kaggle Data Science Meetup | SFU Ventures Lab)

Vancouver, BC

Table of Content
● Bio

● Competition

● Evaluation metric

● Winning solutions

● My solution

● What didn’t work

● Conclusion

Kenneth Emeka Odoh
2

Education

● Masters in Computer Science (University of Regina) 2013 - 2016
● A number of MOOCs in statistics, algorithms, and machine learning

Work

● Research assistant in the field of Visual Analytics 2013 - 2016
○ { https://scholar.google.com/citations?user=3G2ncgwAAAAJ&hl=en }

● Software Engineer in Vancouver, Canada 2017 -
● Regular speaker at a number of Vancouver AI meetups, organizer of

distributed systems meetup, and Haskell study group and organizer of
Applied Cryptography study group 2017 -

Bio

Kenneth Emeka Odoh
3

https://scholar.google.com/citations?user=3G2ncgwAAAAJ&hl=en

4
Kenneth Emeka Odoh

Competition
● Geology is the earth science that deals with the study of

the properties of the earth crust.

● This competition is related to geology.

● Competition focuses on structured prediction.

● Salt occurs when drilling for crude oil or gas in a number
of oil fields around the world.

● Given a radar image, find the patches of salt in the
images. This is a classic image segmentation problem.

Kenneth Emeka Odoh
5

The prizes consist of

● 1st Place - $ 50,000
● 2nd Place - $25,000
● 3rd Place - $ 15,000
● 4th Place - $ 10,000

Competition rules
● 5 submissions per day.
● External data is not allowed.

6
Kenneth Emeka Odoh

Leaderboard

Kenneth Emeka Odoh Private and public leaderboard (side by side comparison)
7

Types of Segmentation

https://www.meetup.com/LearnDataScience/events/253121103/ @matt & @bruce
Kenneth Emeka Odoh

8

[https://hal.archives-ouvertes.fr/file/index/doc
id/730844/filename/Mohriak_LeroyGSL2012
.pdf]

This knowledge from the figure
was exploited

● Show the impact of depth on
the plates

● Create a local CV validation
by stratifying using the
depth. This matches the
public leaderboard to a few
decimal places.

Kenneth Emeka Odoh
9

Data
● Number of training set: 4000 images
● Number of testing set: 18000 images
● Original image size (101 x 101) pixels

Each image has a mask in training set.

Only images are given in the testing set, then you have to predict the mask.

Competition lasted for 3 months.

Submission format is a compression format of Run length encoding

Kenneth Emeka Odoh
10

Kenneth Emeka Odoh

Image vs mask
{https://www.kaggle.com/skainkaryam/basic-data-visualization-using-pytorch-dataset#} 11

Evaluation metric

[https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/]

Average IOU as a mean of IOUs by
varying the thresholds {0.5, 0.55, … ,
0.95}.

Kenneth Emeka Odoh
12

Winning Solution: 1st place
Summary can be found in
{https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/69291 }.
● encoder: ResNeXt50 / ResNet34
● center: Feature Pyramid Attention
● decoder: conv3x3, T conv, scSE + hyper columns
● loss: BCE, Lovász - 2-level pseudo-labeling
● 2 model final ensemble

It is good to note the following:
● Loss: BCE for classification and Lovasz for segmentation
● Created a local CV by stratifying by depth which correlated with LB.
● segmentation zoo {https://github.com/qubvel/segmentation_models }
● for more information on hypercolumn

{https://en.wikipedia.org/wiki/Cortical_column }.
● scSE, Spatial-Channel Sequeeze & Excitation

{https://arxiv.org/abs/1803.02579 }Kenneth Emeka Odoh
13

https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/69291
https://github.com/qubvel/segmentation_models
https://en.wikipedia.org/wiki/Cortical_column
https://arxiv.org/abs/1803.02579

1st stage training

Input: 101 -> resize to 192 -> pad to 224
Encoder: ResNeXt50 pretrained on ImageNet
Decoder: conv3x3 + BN, Upsampling, scSE
Optimizer: RMSprop. Batch size: 24

Loss: BCE+Dice. Reduce LR on plateau starting from 0.0001
Loss: Lovasz. Reduce LR on plateau starting from 0.00005
Loss: Lovasz. 4 snapshots with cosine annealing LR, 80 epochs each, LR

starting from 0.0001

Some attempts at ensembling
5-fold ResNeXt50 had 0.864 Public LB (0.878 Private LB)
5-fold ResNet34 had 0.863 (0.880 Private)
Their ensemble scored 0.867 (0.885 Private)

Kenneth Emeka Odoh
14

2nd Stage Training

The first stage provides pseudolabels using probability. Confidence was measured
as a measure of percentage count of pixel predictions (probability < 0.2 or
probability > 0.8)

They used ResNeXt50 was pretrained on confident pseudolabels; and 5 folds
were trained on top of them. 0.871 (0.890 Private)

Kenneth Emeka Odoh
15

3rd Stage Training

We took all the pseudolabels from the 2nd stage ensemble, and phalanx trained 2 models:
resnet_34_pad_128

Input: 101 -> pad to 128
Encoder: ResNet34 + scSE (conv7x7 -> conv3x3 and remove first max pooling)
Center Block: Feature Pyramid Attention (remove 7x7)
Decoder: conv3x3, transposed convolution, scSE + hyper columns
Loss: Lovasz

resnet_34_resize_128
Input: 101 -> resize to 128
Encoder: ResNet34 + scSE (remove first max pooling)
Center Block: conv3x3, Global Convolutional Network
Decoder: Global Attention Upsample (implemented like senet -> like scSE, conv3x3 -> GCN)

+ deep supervision
Loss: BCE for classification and Lovasz for segmentation

Kenneth Emeka Odoh
16

Training overview:
Optimizer: SGD. Batch size: 32.

Pretrain on pseudolabels for 150 epochs (50 epochs per cycle with cosine annealing, LR 0.01 ->
0.001)

Finetune on train data. 5 folds, 4 snapshots with cosine annealing LR, 50 epochs each, LR 0.01 ->
0.001

resnet_34_pad_128 had 0.874 (0.895 Private)
resnet_34_resize_128 had 0.872 (0.892 Private)

Final Model
Final model is a blend of ResNeXt50 from the 2nd stage and resnet_34_pad_128 from the 3rd stage with
horizontal flip TTA: 0.876 Public LB (0.896 Private LB).
Augmentations
The list of augmentations

HorizontalFlip(p=0.5)
RandomBrightness(p=0.2,limit=0.2)
RandomContrast(p=0.1,limit=0.2)
ShiftScaleRotate(shift_limit=0.1625, scale_limit=0.6, rotate_limit=0, p=0.7)

Code: https://www.kaggle.com/youhanlee/1st-solution-reproducing-1-unet-resnet34-se/notebook#
Kenneth Emeka Odoh

17

https://www.kaggle.com/youhanlee/1st-solution-reproducing-1-unet-resnet34-se/notebook#

Winning Solution: 9th place
The single fold score of SENet154 was 0.882/0.869 and with 10 folds reflective
padding + resizing 0.890/0.875.

● AdamW with the Noam scheduler
● cutout {https://arxiv.org/abs/1708.04552 }
● Stochastic Weight Averaging (SWA) after the training on the best loss, pixel

accuracy (+0.004).
● They used gitlab to manage experiments.
● Using a symmetric version of Lovasz which gave better result

def symmetric_lovasz(outputs, targets):
 return (lovasz_hinge(outputs, targets) + lovasz_hinge(-outputs, 1 - targets)) / 2
Summary available
{https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/69053 }

Kenneth Emeka Odoh
18

https://arxiv.org/abs/1708.04552
https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/69053

Summary can be found
{https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/69093}
Model: UNet-like architecture
Backbone: SE ResNeXt-50, pretrained on ImageNet

Decoder features:
● Spatial and Channel Squeeze Excitation gating
● Hypercolumns
● Deep supervision (zero/nonzero mask)

Tile size adaptation:
● Pad 101 -> 128

Winning Solution: 11th place

19
Kenneth Emeka Odoh

https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/69093

Augmentations:
● Random invert
● Random cutout
● Random gamma-correction
● Random fixed-size crop
● Random horizontal flip

Optimizer:
● SGD: momentum 0.9, weight decay 0.0001
● Batch size: 16
● Finding LR find using fast.ai course - 5e-2
● Cosine annealing for training
● used snapshots for ensembling.

20
Kenneth Emeka Odoh

Loss:
deep supervision it’s a combination of 3 losses - classification loss, pure

segmentation loss , total loss
Classification loss - BCE
Segmentation losses - BCE + Lavasz Hinge*0.5
Segmentation loss was evaluated after cropping masks and predictions back

to 101 -

Cross-validation

5-fold random split
Only depth stratification worked

21
Kenneth Emeka Odoh

My Solution
● A number of neural architectures like dilated unet, ‘vanilla’ unets with varying

depths with batchnorm or dropout.

● Used loss function like lovasz_loss in second stage of training gives boost
after binary cross entropy was used in the first stage of training.

● Standardizing the image gives better results than just dividing by 255.

● Cyclical learning rate policy (CLR) with restart gave some boost in training
{https://arxiv.org/abs/1506.01186}.

● Don’t use ReduceLROnPlateau with CLR at the same time. You can confuse
your network.

● Training with reduce on plateau in the spirit of simulated annealing tends to
restore learning after relatively long epochs of degrading performance in
some cases.

Kenneth Emeka Odoh
22

https://arxiv.org/abs/1506.01186

● Be careful with early stopping. It may be a blessing or a curse.

● Pre-trained networks in my experimentation were not better than training from
scratch.

● Did Test-time argumentation with only horizontal flipping.

● Got best 5 models with scores from 0.74 - 0.79.

● Perform CRF is local CV is <0.75. Under this condition, I get some 0.2 boost
in LB score.

● Ensemble using weighted average using the LB scores as weight.See more
information in conclusions section.

Position: 1482 / 3267 teams
Private LB : 0.824

Kenneth Emeka Odoh
23

My System Setup
● I used a GTX 1080 with 32GB Ram and ITB hard disk. Luckily, I did not have

any need for heaters in my room.

● I create a hypothesis and try to verify it in the code. I will out a number of
Python scripts.

● Run the Python script with a bash script. Each bash script runs a list of
Python script which I consider as an experiment.

○ The benefit of this setup, if a script files, the other scripts with still runs. This will reduce time of
development.

● Jupiter was better if I had to visualize.

● Ran over 100 experiments, validating a number of hypotheses.

● Extensive diagnostics to figure out when experiments go badly and end
experiments to save time.

Kenneth Emeka Odoh
24

What didn’t work
● Performing fft on the image and using the amplitude gives very bad

performance. This made me suspect that the phase angles were
important.

● Focal loss, lovasc loss seem to give participant boost if used in first stage
training. However, it gives output in many cases that is meaningless.
Although, someone claimed on the forum that it required a special kind of
gradient flow but logit on the softmax layer of the network

● Training-time argumentation could not work for me.

● Techniques like DANet, OCNet, pixel shuffling, transposing did not work
for some people.

● Pseudo-labeling worked for some and not for others.
Kenneth Emeka Odoh

25

Discussions
● Private LB score was higher for many teams as it has been hypothesized that organizers

cherry picked “few-pixel masks (which were hard to predict, incurred high penalty and
probably weren’t important from business standpoint) from private set”.

● Rule of thumb for using pseudo-labeling: it is used when the training set is small.
However, it is difficult to determine sample size and to tune properly making hard to use
in production.

● Treat as a classification + segmentation problem instead of a straightforward
segmentation.

● Don't trust CV, trust stability
{https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/69051 }

● There was a well-written post about the unethical nature of the competition based on a
climate change activist.This person was against the oil industry and managed to clearly
articulate his point, urging people to abandon the competition.

Kenneth Emeka Odoh
26

https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/69051

Common Approaches
● Data preprocessing

○ Data augmentation
○ Upsampling

● Build the model
○ Variations of neural architectures (encoder-decoder architecture)
○ Creating more models

■ Perturb the model (change configuration of network)
■ Perturb the data (fft, cumsum, glcm, watershed e.t.c)

● Post-processing
○ Conditional random field
○ Thresholding
○ Downsampling

● Ensembling
○ Averaging of rle blend (weighted average)

Kenneth Emeka Odoh
27

Data Augmentation
● The goal is to perturb the data to intensify the signal.
● Caveat: using the wrong argumentation can worsen performance.
● During the competition, I came up with a rule of thumb (Intuition) behind data

argumentation
● Crop if the majority of the data on a 2D spectrogram are concentrated in an area in the image.

Taking the crop in the concentrated area would intensify the signal.

● Flip is if you observe that the patterns in the data tend to be symmetric in either horizontal and
vertical axis.

● Augmentation requires some domain knowledge of how the distribution of data may be in the
wild.

● imgaug library { https://github.com/aleju/imgaug }

● Albumentations {https://github.com/albu/albumentations/releases/tag/v0.1.1}

The best argumentation was horizontal flip in this competition.
Kenneth Emeka Odoh

28

https://github.com/aleju/imgaug
https://github.com/albu/albumentations/releases/tag/v0.1.1

Conditional Random Field (CRF)
● CRF is a Markov network suitable for structured prediction.

● Imagine that the features of the data set are highly correlated. As a
result there are lots of overlaps and redundancy. For example, pixels
in an image are similar in local neighbourhood regions.

● Naive Bayes would ignore all the correlations between attributes
which is very informative due to strong independence assumption
leading to skewed probability distribution.

● Adding edges to capture correlations forms a densely connected
network and even harder to figure out the connections.

● Model p(Y|X), instead of p(X,Y). Makes us to care less about
correlation between features.

Kenneth Emeka Odoh
29

● Uses Gibbs (Boltzmann) distribution. See url
{https://en.wikipedia.org/wiki/Boltzmann_distribution } for more information.

[@Daphne Koller, Coursera]
Kenneth Emeka Odoh

30

https://en.wikipedia.org/wiki/Boltzmann_distribution

● CRF is parametrized as a Gibbs distribution, but normalizalized differently.

● CRF can be a logistic regression under some conditions.
● No need to model over distributions that we don’t care about.
● Allows for very expressive features, without the limiting independence

assumption.[@Daphne Koller, Coursera]
Kenneth Emeka Odoh

31

Applications of CRF consist of the following, but not limited to these
● image segmentation

○ input: is a set of pixels with values
○ output: class for every pixel

● Text processing
○ input: word in a sentences
○ output: labels of the word (named entity recognition)

CRF can exploit neighbourhood information when classifying thereby
making it look like sequence modeling of some sort.

Kenneth Emeka Odoh
32

For more information on using CRF with image segmentation, let us visit

{https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/classes/cs294
_f99/notes/lec7/lec7.htm }.

The version of CRF used by a number of participants is
{https://github.com/lucasb-eyer/pydensecrf} based on the paper
{https://www.philkr.net/papers/2013-06-01-icml/2013-06-01-icml.pdf }

Kenneth Emeka Odoh
33

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/classes/cs294_f99/notes/lec7/lec7.htm
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/classes/cs294_f99/notes/lec7/lec7.htm
https://github.com/lucasb-eyer/pydensecrf
https://www.philkr.net/papers/2013-06-01-icml/2013-06-01-icml.pdf

Handling large data set
● Reduce image size.

● Use smaller batch size.

● Use Python generators. A number of deep learning packages
provides a fit-generator method. This allows for careful batch
processing. See tutorial on generator and coroutines
{https://www.dabeaz.com/usenix2009/generators/GeneratorUSENIX.p
df }, {https://www.dabeaz.com/coroutines/Coroutines.pdf }

● Taking a sliding window to crop the image into manageable sizes and
pass through the network and aggregate at the test time.

● Empirically, I found batchnorm to be more computationally expensive
than dropout in keras.

Kenneth Emeka Odoh
34

https://www.dabeaz.com/usenix2009/generators/GeneratorUSENIX.pdf
https://www.dabeaz.com/usenix2009/generators/GeneratorUSENIX.pdf
https://www.dabeaz.com/coroutines/Coroutines.pdf

Conclusions
● If you are using save-best model, then it is better to train for longer epoches.
● The trick to improving results is in identifying images without salt patches.

○ Participant tried to create a network to identify empty mask. This helped to intensify the
signal.

○ I tried to do so at the point of ensembling. Note, this will only work if your models are as
diverse as possible.

● Avoid using batchnorm with dropout in the same network. This leads to bad
performance {https://arxiv.org/pdf/1801.05134.pdf }

● Systematically reducing the dropout rate as information flows through the
encoder-decoder network leads to improved performance.

● Upsampling during training especially for the dilated u-nets tends to improve
performance.

Kenneth Emeka Odoh
35

https://arxiv.org/pdf/1801.05134.pdf

Thanks for listening
@kenluck2001

 https://www.linkedin.com/in/kenluck2001/

kenneth.odoh@gmail.com

https://github.com/kenluck2001?tab=repositories

Kenneth Emeka Odoh
36

https://www.linkedin.com/in/kenluck2001/
https://github.com/kenluck2001?tab=repositories

References
1. Daphne Koller, Probabilistic graphical models, Coursera,

{https://www.coursera.org/lecture/probabilistic-graphical-models/condi
tional-random-fields-UJ1Ke }

Kenneth Emeka Odoh
37

https://www.coursera.org/lecture/probabilistic-graphical-models/conditional-random-fields-UJ1Ke
https://www.coursera.org/lecture/probabilistic-graphical-models/conditional-random-fields-UJ1Ke

Past Talks
Some of my past talks

★ Compressed sensing using generative models,
https://www.slideshare.net/kenluck2001/compressend-sensing-using-generative-model-122976230 ,
2018

★ Tutorial on Cryptography, slide: https://www.slideshare.net/kenluck2001/crypto-bootcamp-108671356 ,
2018

★ Landmark Retrieval & Recognition, slide:
https://www.slideshare.net/kenluck2001/landmark-retrieval-recognition-105605174 , video:
https://youtu.be/YD6ihpBMyso , 2018

★ Tracking the tracker: Time Series Analysis in Python from First Principles, slide:
https://www.slideshare.net/kenluck2001/tracking-the-tracker-time-series-analysis-in-python-from-first-pri
nciples-101506045 , 2018

★ WSDM Recommender System, slide: https://www.slideshare.net/kenluck2001/kaggle-kenneth , video:
https://youtu.be/exwJmQzDBag , 2018

Kenneth Emeka Odoh
38

https://www.slideshare.net/kenluck2001/compressend-sensing-using-generative-model-122976230
https://www.slideshare.net/kenluck2001/crypto-bootcamp-108671356
https://www.slideshare.net/kenluck2001/crypto-bootcamp-108671356
https://www.slideshare.net/kenluck2001/landmark-retrieval-recognition-105605174
https://youtu.be/YD6ihpBMyso
https://youtu.be/YD6ihpBMyso
https://www.slideshare.net/kenluck2001/tracking-the-tracker-time-series-analysis-in-python-from-first-principles-101506045
https://www.slideshare.net/kenluck2001/tracking-the-tracker-time-series-analysis-in-python-from-first-principles-101506045
https://www.slideshare.net/kenluck2001/tracking-the-tracker-time-series-analysis-in-python-from-first-principles-101506045
https://www.slideshare.net/kenluck2001/kaggle-kenneth
https://youtu.be/exwJmQzDBag
https://youtu.be/exwJmQzDBag

